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Abstract

Synthetic polymers, which account for over 400 million tons of global production annually, are primarily composed
of harmful chemicals that persist in the environment, leading to significant ecological and health issues. The global
market for synthetic polymers is valued at approximately $31.46 billion in 2023, yet their environmental footprint

is becoming increasingly untenable due to rising contamination levels and bioaccumulation. These synthetic poly-
mers are recognized as major contributors to environmental degradation and pose severe risks to human health,
with over 93% of Americans testing positive for plastic-related chemicals in their bodies. To mitigate these impacts,
the industry is shifting towards biopolymers, which are projected to reach a market value of USD 38.5 billion by 2030,
growing at a CAGR of 15.2%. Biopolymers derived from plants and microbes present a sustainable alternative due

to their biodegradable and biocompatible nature. Plant-based biopolymers, such as those derived from agricul-

tural residues, promote a zero-waste economy and have a lower environmental impact. Microbial production

of biopolymers, using strains like Agrobacterium, Erwinia, Bacillus sp., Pseudomonas sp., and Xanthomonas campes-

tris, is recognized for its efficiency and scalability. These biopolymers are increasingly used in high-priority markets,
including the food industry, where they are valued for their safety and unique properties, and the medical and phar-
maceutical sectors, where they serve as biocompatible materials for drug delivery and tissue engineering. The present
review mainly focuses on the various plants- and microbes-based biopolymers and their applications in different
industries.
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Introduction

The inception of synthetic polymers dates back to 1869
when John Wesley Hyatt developed the first synthetic
polymer as a replacement for ivory. Leo Baekeland then
introduced Bakelite in 1907, marking the emergence of
the first fully synthetic plastic devoid of naturally occur-
ring molecules. The expansion of the plastic industry
gained momentum during World War II, leading to the
widespread adoption of synthetic polymers in various
applications. Today, synthetic polymers are integral to
modern life, found in countless products and industries
[41]. The global synthetic polymers market reflects this
continued growth and importance, with an estimated
value of USD 24.97 billion in 2024, expected to rise to
USD 35.61 billion by 2031. This growth is driven by a
compound annual growth rate (CAGR) of 5.2% from
2024 to 2031 (source: coherentmarketinsights). How-
ever, the widespread use of synthetic polymers is not
without significant ecological and health concerns.
Despite their ubiquity, only about 9% of all plastics

produced have been recycled [49]. Projections indicate
that by 2050, around 12,000 million metric tons of plas-
tic waste could accumulate in landfills or the environ-
ment. Microplastics, which are now found in the air,
water, soil, food, and even human blood, present alarm-
ing health risks. A recent study revealed the presence
of microplastics in the blood of 17 out of 22 healthy
individuals, highlighting the pervasive nature of this
contamination [58, 59]. Additionally, many synthetic
polymers contain harmful additives such as phthalates
and bisphenols, which can leach into the environment
and cause endocrine disruption [88]. These chemi-
cals are associated with severe health issues, including
infertility, obesity, diabetes, and cancer [25]. If current
trends continue, plastic production and disposal could
account for 13% of the global carbon budget by 2050,
underscoring the urgent need to address these environ-
mental and health impacts [113].

To combat these challenges, advances in both
mechanical and chemical recycling are essential for
improving polymer waste management. Mechanical
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recycling processes are being refined to handle a
broader variety of plastics [128], while chemical recy-
cling technologies are being developed to convert
mixed plastic waste into valuable raw materials, reduc-
ing reliance on new resources and enhancing recycling
rates [46]. Innovative technologies such as advanced
sorting systems and chemical depolymerization meth-
ods are also emerging, enabling the breakdown of plas-
tics into their constituent monomers for reuse [21].

The pursuit of alternatives to synthetic polymers is
equally vital, with biopolymers offering a promising path
forward. Biobased polymers, derived from plant and
microbial sources, represent a sustainable solution with
diverse applications across industries. Biopolymers are
non-hazardous and biocompatible, sourced from liv-
ing organisms like plants, animals, and microorganisms.
They can be directly synthesized within living cells or
chemically synthesized using materials from living cells.
Due to their non-toxic, biodegradable nature, biopoly-
mers serve as excellent alternatives to synthetic polymers
in mitigating environmental concerns [55].

The global market for bioplastics and biopolymers was
valued at approximately USD 14.3 billion in 2023 and is
anticipated to grow to USD 38.5 billion by 2030, reflect-
ing a compound annual growth rate (CAGR) of 15.2%
from 2023 to 2030. This significant growth is driven by
advancements in biotechnology, increasing consumer
awareness of environmental sustainability, and the
expanding use of biopolymers across various sectors
(Source: globenewswire). Biopolymers are available in
various forms, including polypeptides, polysaccharides,
and polynucleotides [19].

They can be broadly classified into two categories
based on their origin. Plant-derived biopolymers, such as
cellulose, starch, and hemicellulose, have long been val-
ued for their abundance and versatility [42]. Meanwhile,
microbial biopolymers, including polyhydroxyalkanoates
(PHA), polyhydroxybutyrate (PHB), polylactic acid (PLA)
and bacterial cellulose, are gaining attention for their
biodegradability and customizable properties. The devel-
opment and adoption of biopolymers offer a promising
avenue toward addressing the environmental challenges
posed by synthetic polymers [39].

The widespread adoption of biopolymers across indus-
tries marks a pivotal moment in the quest for sustaina-
ble solutions to contemporary challenges. Derived from
natural sources such as plants and microorganisms,
biopolymers have emerged as versatile materials with a
myriad of applications. They are increasingly employed in
fields including food packaging, medical uses, cosmetics,
agriculture, wastewater treatment, and industrial pro-
cesses. For instance, polylactic acid is widely used in the

Page 3 of 21

automotive sector due to its mechanical strength. Nota-
bly, Toyota first employed this polymer to make a wheel
cover for the Toyota Raum [104]. In the textile industry,
biopolymers such as chitosan, cellulose ethers, and algi-
nate serve various purposes, including acting as binding
agents, leveling agents, and viscosity modifiers, respec-
tively [48]. These biodegradable and renewable materials
play a crucial role in advancing sustainability, reducing
ecological footprints, and decreasing reliance on fossil
fuels.

These biodegradable and renewable materials play a
crucial role in advancing sustainability efforts, reducing
ecological footprints, and diminishing reliance on fossil
fuels [83]. With their distinctive properties and composi-
tions, biopolymers serve various purposes in biomedical
engineering, tissue engineering, drug delivery systems,
packaging, construction, electronics, and beyond. Addi-
tionally, the performance of biobased polymers can be
enhanced through various modifications, expanding their
range of applications. Techniques such as esterification
and etherification, the incorporation of nanoparticles
to improve thermal stability, and copolymerization by
blending with other polymers to create biopolymers with
tailored properties, all contribute to making biopolymers
ideal alternatives to conventional polymers. Their versa-
tility and environmentally friendly characteristics posi-
tion them as promising solutions for fostering a greener
and more sustainable future across diverse sectors [27].
This review provides an in-depth exploration of the
diverse realm of biopolymers, shedding light on their
wide-ranging applications and offering a comprehensive
understanding of these sustainable materials. By explor-
ing the various industries that benefit from biopolymers,
it uncovers their multifaceted roles and the potential they
hold in advancing sustainability across different sectors.

Plant based biopolymers

Plant-derived biopolymers represent a sustainable and
environmentally-friendly class of materials sourced from
renewable plant origins. They present a biodegradable
substitute for conventional petroleum-based and syn-
thetically derived polymers, contributing to a reduced
reliance on chemicals and finite fossil fuel resources.
Frequently encountered instances of plant-derived
biopolymers encompass cellulose, chitosan, and starch,
which are obtained from a diverse range of plants such
as wheat, rice, potatoes etc. (Fig. 1; Table 1). With prop-
erties such as biodegradability, biocompatibility, and the
potential for tailored functionalities, plant-based biopol-
ymers are increasingly being adopted across industries
like packaging, agriculture, personal care, and biomedical
applications [16, 115]. The following are among the most
prevalent plant-derived biopolymers:
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Fig. 1 Plant based biopolymers

Cellulose

Cellulose, the most abundantly present carbohydrate, is
a naturally stable nontoxic biodegradable polymer pri-
marily present in nature within microfibrils found in
the cell walls of various types of wood (like softwood,
spruce, cedar and hardwood) and plants (like flax, hemp,
cotton, and ramie). The monomer unit in cellulose is
glucose, attached by B(1—4) glycosidic linkages. Cel-
lulose possesses a complex hierarchical structure, com-
prising aggregates of extremely fine fibrils containing
multiple cellulose chains, which are then arranged to
form cellulose fibers. These fibers are further organ-
ized into filamentous structures through wet extrusion.
Additionally, cellulose microfibrils can also aggregate
to form either microcrystalline cellulose or cellulose
nanocrystals. Although wood cellulose is the most com-
mon source for pharmaceutical-grade microcrystalline
cellulose, cellulose nanocrystals can be derived from vari-
ous sources, including wood cellulose and plant cellulose
[109]. Plant cellulose can be chemically modified to form
derivatives like hydroxypropyl methylcellulose, sodium
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carboxymethyl cellulose, hydroxyethyl cellulose [84] car-
boxymethyl cellulose, cellulose xanthate, cellulose nitrate
[102], cellulose ether, cellulose ester, cellulose acetate and
cellulose sulfate [109], expanding its applications in the
pharmaceutical and biomedical fields. Cellulose is also
widely used in beauty products, agricultural chemicals
and for the formation of cellophane films.

Starch

Starch, ranking as the second most prevalent poly-
mer in nature following cellulose, has been extensively
researched for various sustainable industrial applica-
tions. This polysaccharide consists of two glucan pol-
ymers, namely amylose and amylopectin, connected
via a-1,4- and «-1,6-glycosidic bonds [10]. The differ-
ent proportions of these components in various starch
sources like corn, potato, rice, wheat, maize, barley
and cassava facilitate the utilization of unconventional
starch sources in the production of edible films. Starch,
whether in its original state or after modification, is
frequently employed as a film-forming substance to
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produce biodegradable and ingestible films and coat-
ings. The elevated amylose content inherent in starch is
particularly desired as it contributes to the production
of films with favorable technological characteristics
[87]. Starch-based biopolymers are a natural, bio-based
alternate to conventional petroleum-derived plastics
such as polystyrene, which are lightweight and often
employed in packaging applications [37]. Additionally,
starch has a high demand in paper, textile, adhesive and
cardboard industries [129].

Chitosan

Plant-based chitosan stands out as a significant biopol-
ymer with diverse applications spanning agriculture,
healthcare, and various industries. Chemically known
as poly (1,4-B-D-glucopyranosamine), chitosan repre-
sents a de-acetylated form of chitin, a substance present
in the exoskeletons of arthropods like lobsters, shrimps,
and crabs, as well as in the cell walls of fungi. Plant-
derived chitosan, sourced from mushrooms or Asper-
gillus niger, offers a sustainable, animal-free alternative.
Recognized for its biodegradability, environmental
friendliness, and compatibility with living organisms,
this biopolymer finds suitability in sustainable agricul-
ture, food production, and cosmetics. Plant-derived
chitosan has been observed to stimulate plant growth
by modulating various physiological processes, thereby
enhancing crop yield, quality, and natural defense
mechanisms. Moreover, chitosan exhibits a broad spec-
trum of properties including antifungal, antibacterial,
antiviral, and bio-nematicidal effects, making it invalu-
able across various applications. Its versatility extends
to the pharmaceutical industry, aiding in drug delivery,
as well as biomedical fields like bone and tissue regen-
eration, and cosmeceuticals [28].

Pectin

Pectin, a complex heteropolysaccharide, serves as a sig-
nificant multifunctional constituent of the cell wall in
numerous terrestrial plants. Primarily composed of sub-
domains known as xylogalacturonan, rhamnogalactu-
ronan I, rhamnogalacturonan II, which are linked to the
homogalacturonan skeleton, pectin consists of approxi-
mately 70% galacturonic acid. Citrus fruit peels are
widely recognized as the primary source for industrial-
scale pectin extraction due to their favorable properties
and high yield. Various methods, including hydrother-
mal-assisted extraction, ultrasound-assisted extraction,
hydrodynamic cavitation, microwave-assisted extraction,
subcritical water extraction, and enzyme-assisted extrac-
tion, have been utilized to extract anionic biopolymer

Page 6 of 21

pectin from organic peel waste [68]. It finds extensive
use in the food production sector for its functions such
as a thickening, emulsifying, gelling, stabilizing and coat-
ing. In the biomedical field, it is utilized in gene and drug
delivery, cholesterol reduction, wound healing, and as a
micro- and nano-encapsulating agent for controlling the
release of active ingredients with various functionalities
[36].

Xylan

Hemicelluloses are composed of B-D-pyranol residues
linked in a 1, 4 configuration,and are categorized into
three main sub-groups: xylans, mannans, and xyloglu-
cans. Xylan, the most abundant type, is composed of
B-D-xylopyranosyl (xylose) units connected via p-1-4
glycosidiclinkages [118]. The forms of branching origi-
nating from the p-D-xylopyranosyl backbone are dictated
by the source of xylan, leading to subcategories of xylan,
such as arabinoxylan (found in cereal grains), homoxylan
(found in seaweed and in algae), arabinoglucuronoxy-
lans (found in grass) and glucuronoxylan (predominant
hemicellulose component of hardwood). Non-toxic and
biocompatible characteristics of xylan make it suitable
for various biocomposite applications. Through various
chemical methods, it can be transformed into bioplastics
for packaging, xylan-based hydrogels for water reme-
diation, and can also be transformed into chemicals like
lactic acid, xylitol, furfural and ethanol [82]. Most major
sources of xylan are Pinus pinaster wood and Eucalyptus
globulus wood. Other common sources include almond
shell, corn cobs and rice husk [103].

Guar gum

It is extracted from seeds of the plant Cyamopsis
tetragonolobus, predominantly cultivated in India and
Pakistan. It constitutes a galactomannan polysaccha-
ride comprising a linear arrangement of (1— 4)-linked
B-D-mannopyranosyl units, with (1— 6)-linked a-D-
galactopyranosyl residues serving as side chains, essen-
tially featuring a mannose backbone with galactose side
chains [77]. Guar gum is esteemed as a valuable biopol-
ymer for its distinctive attributes, notably its capacity to
establish hydrogen bonds with water molecules, resulting
in thickening and stabilizing capabilities. Consequently, it
finds extensive application across various sectors includ-
ing food, pharmaceuticals, textiles, and oil. Within the
food industry, guar gum acts as a thickener, stabilizer, and
emulsifier in a wide array of products such as ice cream,
sauces, beverages, baked goods, meat items and it also
serves as a dietary fiber supplement. Furthermore, it is
broadly used in cosmetic industry in manufacturing of
shaving creams, toothpastes, shampoo, mists, hair dyes
and dry face masks etc. [121].
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Alginate

Different sources of alginate include Sargassum, Lami-
naria, Nacrocystis, Marcocystsporifera, Ascophyllum,
Alario and Eisenia [5]. Alginate is a naturally occurring,
linear, and anionic polysaccharide abundant in nature,
which is primarily sourced from the cell walls of brown
seaweeds of the Phaeophyceae class. Its composition con-
sists of 1,4-a-L-guluronic acid residues and 1,4-linked-p-
D-mannuronic acid in its structure. Alginate possesses
numerous advantageous qualities that render it a valu-
able plant-derived biopolymer. These include its ability
to form hydrogels as well as its biodegradability, biocom-
patibility, biodegradability and non-toxic nature. These
attributes have contributed to its widespread adoption
across diverse industries, encompassing pharmaceuti-
cals, biomedicine, and agriculture [3]. In the agricultural
industry, alginate is used as a superabsorbent polymer, a
coating for seeds, fruits, and vegetables, and as a carrier
for plant-growth-promoting microorganisms and bio-
control agents [66].

Acacia gum

Acacia gum, commonly referred to as gum arabic, is a
naturally sourced biopolymer derived from plants, specif-
ically extracted from the sap of different Acacia tree vari-
eties, particularly Acacia seyal and Acacia senegal. This
intricate polysaccharide is characterized by its branching
structure and comprises galactose and arabinose residues
[7]. Mukherjee and Mullick [78] conducted a study inves-
tigating the optical properties of acacia gum modified
with black grape and eggplant chromophores, comparing
them to the unmodified form. The research concluded
that the chromophore-modified Gum Acacia meets the
necessary criteria, rendering them as promising materi-
als for applications in DSSCs. Acacia gum has also been
researched for its potential as a prebiotic by Rawi et al.
[99], as it possesses the capacity to specifically enhance
the proliferation of advantageous gut bacteria. This dis-
covery has resulted in its application as a dietary fiber
supplement and in the creation of functional food prod-
ucts. Furthermore, it has a wide-ranging application in
the pharmaceutical, cosmetic, food and other industries
as a thickening agent, emulsifier and stabilizer.

Carrageenan

Carrageenan is a sulphated polysaccharide composed of
a-1,3 and B-1,4 glycosidic linkages connecting D-galac-
tose units and 3,6-anhydro-galactose units. It is mainly
obtained from marine plants belonging to family Rho-
dophyceae commonly called Red algae [92]. It serves as
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an anti-inflammatory substance and finds application as
a thickener, binder, stabilizer, gelling and wetting agent
across various industries, both food and non-food. Its
utilization extends notably within dairy farm products
[7]. Fatehi et al. [34] explored carrageenan’s potential for
soil treatment, discovering its promising qualities such
as shear-thinning behavior, soil stabilization abilities,
resistance to degradation, and versatility. These find-
ings suggest carrageenan could be a valuable solution
for improving soil mechanics and tackling geotechnical
issues.

Microbial-based biopolymers

Apart from plants, microorganisms also serve as a good
candidate for obtaining different types of biopolymers.
Some important biopolymers of microbial origin include
pullulan, levan, curdlan, cellulose, xanthan gum, poly-
hydroxyalkanoate, polyhydroxybutyrate etc. with wide
applications (Table 2; Fig. 2).

Pullulan

It is an exopolysaccharide, consisting of maltotri-
ose units with a-1,6glycosidic bonding. It is mainly
obtained as a water-soluble polysaccharide from a
polymorphic fungus Aureobasidium pullulans [43]. R.
Bauer made the discovery of microbial pullulan pro-
duction by Pullularia pullulans in 1938.In comparison
to traditional polymers, pullulan has been reported to
enhance the tensile strength by 6-37 times and pro-
longs bio-adhesion time by 72-120 times [80]. Pullu-
lan has a unique characteristic that is it impermeable
to oxygen so it can be used as blood plasma substi-
tute. Tremella mesenterica, Cryphonectria parasitica,
Teloschistes flavicans, Rhodotorula bacarum, Cytaria
harioti and C. darwinii are other reported microor-
ganisms for pullulan production [111, 117]. The bio-
synthesis of pullulan involves several key genes that
encode enzymes responsible for its production. For
instance, Pullulan Synthase (AGSII) enzyme is criti-
cal for the polymerization of glucose units into pul-
lulan. Studies have identified the AGSII gene in A.
pullulans, which is responsible for catalyzing the
transfer of glucose from uridinediphosphoglucose
(UDPQ) to the growing polysaccharide chain. Addi-
tionally, transformation systems, such as plasmid vec-
tors, have facilitated the introduction of specific genes
into A. pullulans to create overproducing strains [22].
Modified pullulan finds extensive applications across
the food, pharmaceutical, cosmetics, and biomedi-
cal industries. It has high demand in paper industry
because of its good glue capacity.
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Levan

It is starch-based biopolymer with fructose units joined
together in the main chain by B-2,6-glycosidic bonds
and P-2,1 in branching structure. The synthesis of levan
includes the breakdown of sucrose into fructose as well
as glucose by levansucrase enzyme produced by microor-
ganisms, whereby the fructose units are transferred from
sucrose by the enzyme to form [-2,6-glycosidic bonds
and levan formation. Thelevanase enzyme, breaking
down the -2,6-glycosidic bonds, is responsible for diges-
tion of levan resulting in the release of the fructose as the
main metabolite. Species of Corynebacterium, Mycobac-
terium, Bacillus, Streptococcus, Acetobacter, Zymomonas,
Erwinia, Pseudomonas and Aerobacterare various levan
producing bacterial species [7]. The levan produced by
bacteria have the molecular weight around 500,000 dal-
tons with broad-spectrum activities and applications [24,
30]. It demonstrates varied viscosity, solubility and stabil-
ity, which are contingent upon its origin and the condi-
tions of production. It is a strong antioxidant, therefore,
has hyperglycemic inhibiting, anticancer and anti-HIV
properties [62]. It is thermostable with liquefying point
temperature near 225°C and shows resistance against
invertase and amylase. Because of its colloidal nature, it is
used as food thickener and in cosmetic industries.

Bacterial cellulose

It is an exopolysaccharide with fibers ranging between
20-100 nm diameter, produced by numerous bacte-
rial species such as Agrobacterium, Aerobacter, Achro-
mobacter, Alcaligenes, Azotobacter, Gluconacetobacter,
Komagataeibacter, Pseudomonas, Dickeya, Rhizobium,
Rhodobacter and Sarcina etc. Among these, Gluconaceto-
bacter xylinus earlier known as Acetobacter xylinus stands
as the earliest identified and extensively researched
microorganism for bacterial cellulose production [133].
The bacterium Komagataeibacter is a model organism
for microbial cellulose production and research purposes
[7]. The key genes involved in bacterial cellulose biosyn-
thesis are bcsA, besB, and besC. These genes produce
proteins that constitute the cellulose synthase complex,
essential for the polymerization of glucose into cellulose
chains [32, 63]. Bacterial cellulose has exceptional water
retention owing to its high hydrophilicity and extensive
surface area-to-mass ratio [134]. Moreover, it show-
cases impressive mechanical strength, high crystallinity,
and cost-effective production. It is more accepted than
plant cellulose because it is free from pectin, hemicellu-
loses and lignin and its purification and cleaning is much
easier than plant cellulose. Microbial cellulose is a good
alternative of xanthan gum for thickener in biomedical
applications [7].
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Curdlan

Curdlan is a bacterial exopolysaccharide with B-(1,3)-
glycosidic bonding, obtained from bacteria including
species of Rhizobium, Agrobacterium, Alcaligenes, Cel-
lulomonas, and Bacillus etc. mainly by the submerged
fermentation [65]. Curdlan synthesis was initially noted
in Alcaligenes faecalis var. myxogenes 10C3 in 1962 by
Harada and his team [44]. The main genes involved in
curdlan biosynthesis are crdA, crdB, and crdC. These
genes produce proteins that are vital for the polymeriza-
tion of glucose units into curdlan. Specifically, crdA plays
a key role in synthesizing the polysaccharide backbone,
while crdB and crdC contribute to the regulation of cur-
dlan production [52]. Curdlan has glucose subunits that
repeat, linked by a B bond between the first and third car-
bons of the glucose ring. It is known to produce gels with
colorless, tasteless and odorless properties. It has gelling
property that makes it useful in food and biomedical
industry [56]. Curdlan received approval from the U.S.
Food and Drug Administration (FDA) for use in the food
industry in 1996 and later approved in Korea, Taiwan and
Japan in 1989.

Polyhydroxyalkanoates (PHAs)

Polyhydroxyalkanoates (PHAs), the sole polymer
boasting over 150 variations, represent a biodegrad-
able plastic initially uncovered by Lemoigne in 1925,
synthesized within microorganisms. Their diversity
stems from the varying carbon atom count within their
monomers, yielding a spectrum of types and struc-
tures [110]. Among prokaryotes, poly-3-hydroxybu-
tyrate stands as the major prevalent PHA comprised
of repeating units of (R)-3HB monomers that polym-
erize into a chain. PHAs are broadly categorized into
short chain length (scl-PHAs) such as poly(3-hydroxy-
butyrate); medium chain length (mcl-PHAs) such as
poly(3-hydoxyhexanoate), and long chain length (lcl-
PHAs) such as Poly(3-hydroxypentadecanoate) with
3-5, 6-14 and greater than 14 carbon atoms respec-
tively [79]. The primary genes involved in PHA syn-
thesis are the phaC genes, which encode PHA synthase
enzymes. These enzymes catalyze the polymerization
of hydroxyalkanoate monomers into PHA polymers.
Recent research has identified various classes of PHA
synthases, such as Class I and Class II, which differ in
substrate specificity and polymerization mechanisms
[131]. For instance, a study of 80 phaC genes found that
76 belonged to Class I and four to Class II, illustrating
the diversity of PHA synthases among different micro-
bial strains. Regulatory genes like phaR play a critical
role in controlling PHA synthesis. In Cupriavidus neca-
tor, phaR acts as a transcriptional regulator, influencing
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Fig. 2 Microbial-based biopolymers

the expression of phaC and other related genes. The
deletion of phaR has been shown to decrease PHA
yields, underscoring its significance in the regulatory
network governing PHA production [71].

Ralstonia eutropha and Bacillus megaterium are model
bacteria for isolation of these biopolymers [7]. Schelege-
lella thermodepolymerans DSM 15344 is a thermophilic
bacterium was reported to transform different sugars
into PHA optimally at 55 °C with maximum intake rate
of xylose in comparison to other sugars [53]. They are
extensively used as biocontrol agents, drug carriers,

biodegradable implants, memory enhancers, and anti-
cancer agents [100].

Xanthan gum

It is polysaccharide obtained from gram negative aero-
bic bacterium Xanthomonas campestris [97], through
aerobic fermentation of sugars. It constitutes an ani-
onic complex carbohydrate consisting of pyruvy-
lated mannose, D-uronic acid, 1,4-bonded glucan,
6-O-acetyl D-mannose and D-mannose. Its chemical
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composition is characterized by a linear chain of
1,4-linked B-D glucose serving as the backbone, with
two trisaccharide units branching off at each glucose
residue. Additionally, another side chain is formed
by a linkage between two D-mannose and one D-glu-
curonic acid molecule. Xanthan shows shear reduc-
ing property i.e. pseudoplasticity and forms a viscous
hydrogel when combined with water as water mol-
ecules get absorbed by hydrogen bonds that forms
xanthan gum [69]. It serves as an emulsifier, stabilizer,
thickening and gelling agent in pharmaceutical and
cosmetics industries. Furthermore, it can make conju-
gates with other polymers [7].

Extraction and purification techniques

for bio-based polymers

Extraction techniques of biopolymers are different in
accordance to their structural complexity (Table 3).
For example — Lignocellulose, composed of monomers
units of cellulose, hemicellulose, and lignin. It cannot
easily digested because of presence of covalent bond-
ing between phenolic groups and carbohydrates in its
wall structure. Extraction of lignin, cellulose and hemi-
cellulose can be done by supercritical fluid extraction
method, microwave assisted and non- thermal plasma
methods [64, 107]. These are eco-friendly techniques of
extraction.

a) Extraction of plant based biopolymers Plant cell
wall is rigid and complex. Therefore, extraction
methods are harsh as compare to microbial cells.
Mechanical extraction, Enzyme- assisted extraction,
microwave assisted extraction and supercritical fluid
extractions are various methods for extraction of
biobased polymers from plants (Table 3). Examples:
Cellulose extraction by alkali treatment, bleaching,
and acid hydrolysis. Starch extraction by wet milling
and dry milling followed by centrifugation, and dry-
ing.

b) Extraction of microbial based biopolymers Biopol-
ymers extraction methods are different for intracel-
lular and extracellular biopolymers (Table 3). For
intracellular biopolymers, lysozymes are used to
treat microbial cells followed by extraction of organic
solvent on the basis of solubility and insolubility of
biopolymer. EDTA- microwave assisted and natu-
ral deep eutectic solvents (NADESs) are to widely
accepted methods for extraction of microbial biopol-
ymers. Poly (3-hydroxybutyrate) is an intracellular
biopolymers and it is extracted from Pseudomonas
putida by deep eutectic solvents.
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Purification techniques

To reduce content of impurities from extracted biopoly-
mers various processes can be adopted based on their
solubility, including adsorption, chromatography, mem-
brane separation and precipitation (Table 4). However,
precipitation using isopropanol and Fehling solution led
to high yield of biopolymer and reduce protein fraction,
respectively [9]. Purifying biopolymers involves distinct
challenges, benefits, and constraints that are essential
to their successful application across industries such as
food, medicine, and manufacturing.

Advantages of biopolymer purification

1. Sustainability: Biopolymers are produced from
renewable biological sources, offering an eco-friendly
alternative to traditional plastics. Their ability to bio-
degrade helps in minimizing plastic waste and pollu-
tion [16].

2. Biocompatibility: Numerous biopolymers demon-
strate outstanding compatibility with biological sys-
tems, making them ideal for medical uses such as
drug delivery systems and tissue engineering. This
characteristic is essential for applications involving
interactions with biological tissues [45].

3. Functional Versatility: Biopolymers can be tailored
to exhibit particular attributes, including improved
mechanical strength, thermal stability, and barrier
properties. This flexibility enables their application
across a wide range of fields, from packaging to bio-
medical devices [45].

Challenges in biopolymer in purification

1. Extraction Challenges: Extracting biopolymers from
natural sources can be intricate and expensive, often
requiring several stages, such as purification and
modification. This process can result in low yields
and elevated production costs [1].

2. Reduced Mechanical Properties: Biopolymers typi-
cally have weaker mechanical properties, such as
lower tensile strength and flexibility, compared to
synthetic polymers. This drawback requires contin-
ued research to improve their performance for prac-
tical use [1, 45].

3. Processing Requirements: Biopolymers often need
particular processing conditions to preserve their
properties, adding complexity to their purification
and use. For example, they can be sensitive to tem-
perature and humidity, which impacts their stability
and practicality [12].
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Limitations of biopolymer purification

1. Bioavailability Issues: Processing Requirements:
Biopolymers often need particular processing condi-
tions to preserve their properties, adding complex-
ity to their purification and use. For example, they
can be sensitive to temperature and humidity, which
impacts their stability and practicality [86].

2. Cost-Effectiveness: Purifying biopolymers can be
costly and time-intensive, which may reduce their
competitiveness against conventional synthetic poly-
mers. This economic factor presents a major obstacle
to their broader adoption [45].

Application of biopolymers

Biopolymers are being used in various industries because
of their sustainable nature and biodegradability. Micro-
bial and plant based biopolymers have similar and com-
peting properties with conventional polymers. These
biopolymers are fulfilling numerous needs of indus-
tries such as PLA and PHA highly used for packaging
purposes. Although, mechanical, barrier and tensile
strength of conventional polymers is higher as compare

Table 3 Techniques employed for the extraction of biopolymers
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to biopolymers. But by different modifications such
as etherification esterification and copolymerization
properties of biopolymers can be tailored. For example,
Polylactic acid high tensile strength but low toughness,
however mixing of PLA with polyhydroxyalkanoates
(PHA) can increase toughness [74]. Similarly, barrier
property of bio-based polymers can be enhanced by
nanotechnology and surface coating to make them suit-
able for packaging purposes [98]. Therefore, biopolymers
are replacing synthetic polymers and limiting depend-
ence of industries on fossil fuels. Their toxicity is very
low as compare to synthetic polymers so it is highly used
in biomedical industries and ensures safety concerns.
These biopolymers are replacing synthetic polymers due
to their remarkable performance and cost effectiveness
(Fig. 3, Tables 1 and 2).

Medical and biomedical applications

Biopolymers have garnered significant attention in the
medical and biomedical fields due to their biocompat-
ibility, biodegradability, and versatility. These naturally
derived materials offer a sustainable alternative to syn-
thetic polymers, making them ideal for a wide range of

Extraction Techniques Principle

References

Mechanical Extraction
or microbial biomass

Enzyme-Assisted Extraction

It employs physical methods like grinding and pressing to release polymers from plant cells

Enzymes such as cellulose and lysozymes used to break down plant cell walls or microbial

Jha and Kumar 2019 [51]

Nadar et al. 2018 [81]

membranes, respectively. It leads to release of polymers

Microwave Assisted Extraction

Microwave radiation is used as heat source to disrupt cell wall

Mandal et al. 2007 [64]

Non-thermal plasma Itis a pre-treatment technique in which partial voltage discharged to rise temperature
of electron leads in reduction of recalcitrant nature of any hard material such as lignocel-

lulosic material

Pereira et al. 2021 [91]

Supercritical Fluid Extraction  Pressured carbon dioxide used to extract polymers from plant biomass or microbial cultures  Sapkale et al. 2010 [107]

Deep eutectic solvents Mixture of green solvents liked with hydrogen bonds with low toxicity and used to lower Didion et al. 2024 [29]

melting point of any mixture

Table 4 Techniques employed for the purification of biopolymers

Purification techniques Principle Reference

Adsorption Itis surface based phenomena in which biopolymers bind with surface of adsor-  Agbovi and Wilson 2021 [6]
bent
Chromatography Itis a separation technique based on partial adsorption principle, in which Baidurah 2022 [14]

chemical mixture can be transported through mobile phase and molecules can
be separated on stationary phase on the basis of differential distribution of solute

Membrane separation Different membrane separation techniques such as ultrafiltration, microfiltration,
nanofiltration, elctrodialysis and gas filtration. These techniques are classified

according to membrane pore size

Linetal. 2023 [61]

Precipitation/ Selective Dissolution It is based on the solubility of biopolymer in a specific solvent and impurities can ~ Amid and Mirhosseini 2012 [9]
be removed. Barium hydroxide, Fehling solution and isopropanol etc. are differ-

ent solvents being used for precipitation process
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applications, from drug delivery systems to tissue engi-
neering. Their ability to interact with biological systems
without eliciting adverse immune responses has made
biopolymers a cornerstone in the development of innova-
tive medical technologies. As the demand for safer and
more effective medical treatments continues to grow,
biopolymers are emerging as crucial components in
advancing healthcare solutions.

Below is an overview of the diverse applications
of biopolymers within the medical and biomedical
industries:

1. Wound healing and tissue engineering
Biopolymers like collagen, alginate, and fibrin play a
significant role in wound healing applications. Col-
lagen is commonly applied as a surface coating on
tissue culture plates and is also used in basic gels
for cell culture. Alginate finds its use in regenera-
tive medicine and tissue engineering. Fibrin func-
tions as a hemostatic agent and surgical adhesive,
aiding in blood clotting and accelerating the wound
healing process [16].

2. Drug delivery systems

Biopolymers are being increasingly utilized in drug
delivery systems due to their ability to encapsulate
therapeutic agents and enable controlled release.
Notable examples include polyhydroxyalkanoates
(PHAs) and chitosan, which are used to deliver
small molecules and proteins. Recent studies have
focused on creating transdermal patches and nano-
particles from biopolymers for targeted drug deliv-
ery, which improves bioavailability and therapeutic
effectiveness [35, 38].

3. Nanofiber applications

Biopolymer nanofibers, like those derived from silk
fibroin and gelatin, are employed in a range of medi-
cal applications, including antimicrobial agents, bio-
sensors, and tissue engineering scaffolds. Their large
surface area and porosity are well-suited for enhanc-
ing cell adhesion and proliferation, which are essen-
tial for effective tissue regeneration [50].

4. Implantable devices

Biopolymers are being increasingly incorporated
into the development of implantable medical devices
because of their compatibility with human tissues
and low risk of immunogenicity. Materials such as
polylactic acid (PLA) have been used in sutures and
surgical meshes, offering support for damaged tissues
while promoting healing and minimizing the risk of
infection [15, 18].

5. Biodegradable packaging for pharmaceuticals
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Biopolymers are also used in pharmaceutical pack-
aging, safeguarding drugs and surgical instruments
from contamination while maintaining their safety
and effectiveness. Their biodegradable nature aligns
with the increasing demand for sustainable materi-
als in the healthcare industry. Natural polymers such
as starch, alginate, and cellulose derivatives serve as
fillers to increase tablet mass and act as binders to
enhance particle cohesion during compression. Sev-
eral biodegradable polymers, including poly(glycolic
acid), poly(lactic acid) as well as poly(e-caprolactone),
have been tested for controlled release applications
[38, 47, 93].

6. Regenerative medicine

In regenerative medicine, biopolymers act as scaf-
folds that replicate the extracellular matrix, providing
a conducive environment for cell growth and tissue
repair. Advanced techniques, such as 3D printing,
have enabled the fabrication of intricate structures
with biopolymers like alginate, starch, chitosan and
PLA, which can be customized for specific tissue
engineering needs [35].

7. Antiviral and antibacterial application

Recent research has emphasized the potential of
specific biopolymers, like curdlan and xanthan gum,
as effective antiviral and antibacterial agents. These
characteristics make them well-suited for use in
wound dressings and other medical devices where
controlling infections are crucial [16].

Additionally, Starch is used in bone, spinal cord treat-
ment and cartilage regeneration due to its adhesive
nature. Agarose hydrogels facilitate cell adhesion and
thus used in tissue regeneration, kindey and fibroblast
encapsulation. Alginate, chitosan and carrageenan used
as regenerative medicines and for tissue engineering
[130]. Chitosan is mainly used in implants of ligaments,
cartilage, bone, tendon, nerve, stent, liver and skin regen-
eration. Likewise, PHAs plays important role drug deliv-
ery system [33]. Adhesion, contact inhibition, occlusion,
covering, fixing and suturing are medicinal applications of
various biopolymers. For example- PLA (Polylactic acid)
is a microbial biopolymer used for suturing [75, 127].

Role in food industry

Biopolymers play a significant role in the food industry
due to their diverse functional properties and sustain-
ability. They are utilized in various applications, includ-
ing food packaging, where they enhance product shelf
life and reduce environmental impact. Additionally,
biopolymers serve as thickeners, stabilizers, and gelling
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Fig. 3 Applications of biopolymers in different sectors

agents in food formulations, contributing to improved
texture and consistency. Their natural origin and biodeg-
radability align with the growing consumer demand for
eco-friendly and health-conscious food products. Key
developments include:

ing but also help in extending the shelf life of food
products by providing barriers against moisture and
oxygen [5].

« Active and intelligent packing

Biopolymers are increasingly used in active packag-

1. Food packaging

+ Protein-based films

Recent advancements in protein-based biopolymers
have led to the creation of sustainable food packag-
ing materials. These films are designed to be biode-
gradable and can effectively replace traditional plas-
tic packaging, reducing environmental impact [17].
For example- whey protein based films are widely
being used for packaging purposes as it has excellent
barrier properties and it is biocompatible material
[101].

+ Biodegradable films

A variety of biodegradable films made from mate-
rials like chitosan, cellulose, and alginate have been
developed. These films not only serve as packag-

ing systems designed to interact with food products
for better preservation. For example, films embed-
ded with antimicrobial agents can prevent the
growth of spoilage organisms, thus enhancing food
safety [16, 40].

2. Edible films and coatings

Biopolymers are also utilized in the production
of edible films and coatings, which serve multiple
purposes.

+ Encapsulation of bioactive compounds

Edible coatings made from biopolymers can encap-
sulate nutrients and bioactive compounds, enhanc-
ing the nutritional profile of food products while
also providing a protective barrier [20].

+ Improved texture and stability
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The use of polysaccharides and proteins in food for-
mulations can improve texture and stability, making
them essential in the design of new food products [96].

Role of biopolymers in agriculture

Biopolymers are making significant strides in agricul-
ture due to their versatile applications and eco-friendly
nature. They are utilized in various ways, including soil
conditioning, where they enhance soil structure and
water retention. Additionally, biopolymers serve as
controlled-release carriers for fertilizers and pesticides,
ensuring more efficient nutrient delivery and reduced
environmental impact. Their biodegradable properties
contribute to sustainable agricultural practices by mini-
mizing waste and improving soil health. The following
provides a comprehensive overview of the applications of
biopolymers in agriculture.

1. Biopolymer-based hydrogels Biopolymer-based
hydrogels are three-dimensional networks capable of
retaining substantial amounts of water, making them
effective for soil conditioning. Their applications
include:

+ Water Retention: Hydrogels enhance soil moisture
retention, which reduces the need for frequent irri-
gation and improves water use efficiency, especially
in arid regions where water is scarce [60].

+ Nutrient Release: They act as carriers for fertilizers
and agrochemicals, providing controlled release and
minimizing nutrient leaching. This improves nutri-
ent availability for plants and lessens environmental
impact [126].

+ Soil Structure Improvement: Hydrogels enhance
soil structure and aeration, fostering root develop-
ment and overall plant health. Research shows that
hydrogel interaction with various plant species can
significantly influence crop productivity [124].

2. Biodegradable films, capsules and coatings
Biopolymers are utilized in the production of biode-
gradable films and coatings that safeguard crops and
promote their growth:

+ Seed Coatings: Biopolymer-based coatings can be
applied to seeds to shield them from pests and dis-
eases while delivering essential nutrients during ger-
mination, leading to enhanced seedling vigour and
establishment [67].

+ Mulching Films: Biodegradable mulching films
made from biopolymers help suppress weed growth,
retain soil moisture, and regulate soil temperature,
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thereby improving crop yields and reducing the need
for chemical herbicides [70].

+ Biopolymer capsules: Various types of plant and
microbial biopolymers are used as carrier for encap-
sulation of microbial cell. Inoculation of encapsu-
lated microbial cell in soil enhances their survival
and makes them ideal to deal with various abiotic
stresses [105]. For example, alginate, chitosan and
gum arabic are used for encapsulation of Bacillus
cereus, Streptomyces fulvis and Trichoderma harzi-
anum, respectively [90].

Role of biopolymers in cosmetics

Cosmetic and personal care items are intricate blends
designed for external application on the human body.
Among their extensive ingredient lists are polymers,
which can be either natural or synthetic [108]. Biopoly-
mers are pivotal in the cosmetics industry, providing a
sustainable and efficient substitute for conventional syn-
thetic polymers:

+ Advantages of Biopolymers in Skincare Products:
Biopolymers such as PERFORMA™YV, including vari-
ants like PERFORMA V-55 and V-150, blend plant-
derived materials with synthetic waxes to deliver skin
conditioning, moisturization, and non-greasy attrib-
utes in cosmetic formulas. They enhance features like
lip gloss in lipsticks, enhance oil binding for solidity
in stick applications, and promote smoothness in
hair serums (https://chasecorp.com/nucerasolutions/
understanding-the-real-benefits-of-biopolymers-in-
skincare-products).

+ The function of Biopolymers in Cosmetic Formula-
tions: Biopolymers, derived from natural sources, are
widely employed in cosmetics for their eco-friendli-
ness and compatibility with the skin. PLA serves as
packaging film for cosmetic items, while Micronized
PLA or soy-derived biopolymers are utilized in exfo-
liating scrubs. Chitin, known for its antimicrobial
properties, is employed as an active packaging mate-
rial [125].

» Cosmetic Hydrogels: Biopolymers are employed to
create hydrogels for cosmetic use. These hydrogels,
derived from collagen, chitosan, hyaluronic acid, and
various polysaccharides, provide advantages such as
skin conditioning, hydration, and improved skin elas-
ticity. However, certain biopolymers may pose draw-
backs such as the risk of irritation or allergic reac-
tions [72]

The versatility of biopolymers is attributed to their
diverse sources, ranging from proteins (e.g., collagen,
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casein) and complex carbohydrates (e.g., cellulose, chi-
tin) to polynucleotides (e.g., DNA, RNA).These biopoly-
mers can be chemically or biologically synthesized, and
their properties can be tailored through various process-
ing techniques, such as solvent casting, graft copolym-
erization, 3D printing and electrospinning. The growing
demand for sustainable and environmentally friendly
materials has driven the development and application of
biopolymers, which offer a promising solution to reduce
the reliance on fossil-fuel-based polymers and mitigate
the environmental impact of plastic waste. Conventional
polymers are non- renewable energy resources with high
carbon footprint and toxicity. Therefore, these concerns
increase demand to replace petroleum-polymers with
biopolymer for safer environment. However, feedstock
availability is biggest concern in production of plant
based biopolymers because of food and non-food compe-
tition and in case of microbial based biopolymers during
scaling up of the product, aseptic and controlled condi-
tions are required otherwise contamination can lead to
production of undesired product.

Conclusion

In conclusion, biobased polymers derived from plants
and microbes have demonstrated a promising avenue for
sustainable material development across various indus-
tries, particularly in agriculture, medicine, and food
packaging. The development of biodegradable films,
hydrogels for soil conditioning, and biopolymer-based
drug delivery systems represents significant advance-
ments, all contributing to sustainability and a reduced
environmental impact. The environmentally friendly
nature of these biopolymers, coupled with their bio-
degradability and renewability, positions them as viable
alternatives to traditional petroleum-based plastics.
Despite these advancements, research should continue to
focus on improving the mechanical properties and scal-
ability of biopolymers, ensuring their broader adoption in
industrial applications. Overall, the emerging domain of
biobased polymers shows potential to foster innovation
and sustainability across various industries, providing
environmentally friendly answers to global issues.

Future perspective

The aim of this review is to address countless benefits
and limitation or gap in knowledge about incorporation
of biobased polymers in various industries. One major
limitation is scaling up of microbial based biopoly-
mers because it should be operated into aseptic con-
ditions which are very costly and minor mistake can
lead to production of undesirable product. Addition-
ally, mechanical and thermal properties of biopolymers
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should be improved with more alternative techniques
as these often lag behind conventional plastic. Mecha-
nism of biodegradation of biopolymers and their end
product should be studied into detail. By address-
ing more application, the usage of biopolymers can be
increased. The future of biopolymers appears highly
promising, fueled by technological advancements, sus-
tainability objectives, and the growing demand for eco-
friendly materials. Recent research underscores several
key areas where biopolymers are anticipated to make
substantial impacts across various sectors. They are
increasingly recognized for their potential to replace
traditional petroleum-based plastics, addressing con-
cerns related to plastic pollution. The emphasis on
biodegradable and compostable materials is expected
to intensify, with biopolymers derived from renew-
able resources becoming more prevalent in packaging,
agriculture, and consumer products. Innovations in
biopolymer-based packaging aim to reduce waste while
ensuring food safety and quality, though scaling up pro-
duction at competitive costs remains a challenge.

Advancements in biopolymer technology are also
notable. The integration of nanomaterials into biopoly-
mers is being explored to enhance their mechanical and
barrier properties, potentially leading to smart pack-
aging that responds to environmental changes. Addi-
tionally, hybrid materials combining biopolymers with
synthetic polymers are showing promise for applica-
tions in food packaging and medical devices, offering
improved performance while maintaining biodegrada-
bility. In the medical field, biopolymers are poised to
revolutionize drug delivery systems, tissue engineering,
and implantable devices due to their biocompatibility
and biodegradability. Research focuses on develop-
ing biopolymer scaffolds that support cell growth and
regeneration, potentially advancing regenerative medi-
cine. In the food industry, biopolymers are being used
to create edible films and coatings that improve food
preservation and safety, with intelligent packaging sys-
tems monitoring food quality in real-time emerging as
a key area of interest.

For biopolymers to achieve widespread adoption, eco-
nomic viability is crucial. Research is exploring the use
of agricultural waste and by-products as feedstock to
lower production costs and enhance sustainability. Col-
laboration between academia and industry is essential to
bridge the gap between research and commercial appli-
cation, with successful case studies encouraging invest-
ment and interest from manufacturers. In summary, the
future of biopolymers is bright, with ongoing innovations
expected to enhance their functionality and reduce costs.
As environmental concerns drive the demand for sus-
tainable materials, biopolymers are set to play a vital role
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in shaping a more sustainable future across packaging,
medicine, and food technology. Continued research and
development will be the key to overcoming current chal-
lenges and unlocking the full potential of biopolymers.
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