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Abstract

Keratin has gained increased curiosity from researchers in the last decade for its potential applications in preparation
of biomaterials. Most emphasized properties of keratin as a candidate to manufacture biomaterials involves biodegra-
dability, excellent biocompatibility, self — assembling capability, ability to support cell growth and proliferation, water
absorption and easy availability as waste. Keratin based biomaterials in the form of fibres, scaffolds, films, hydrogels,
nanoparticles are being explored for various biomedical applications including wound healing, drug delivery, oral
tissue regeneration, study models as well as nerve regeneration. Methods opted for fabrication of these materials
include electrospinning, cross-linking and solution casting among others. In order to improve antimicrobial proper-
ties and bioactivity of keratin biomaterials they could also be loaded with drug molecules, antibiotics, growth factors
and other functional peptides. Keratin materials have the advantage of high loading capacity as well as controlled
and prolonged release of drug, thus maximizing the availability at the target site. This current paper critically reviews
the latest developments in the utilization of keratin-based biomaterials in the aforesaid fields.
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Introduction

Due to advancements in technologies involving fabrica-
tion of biomaterials and their expanded utilizations in
various medical applications, the research community in
current era is focusing on using the raw materials being
derived from livestock and agriculture [47, 85]. Such bio-
materials are getting more attention because they tend
to be sustainable as well as can deal with the problems
of waste accumulation and efficient utilization. Thus, the
“Garbage In, Biomaterials Out (GIBO)” concept focuses
on the recycling of agricultural waste into biocompat-
ible materials (Sah et al., 2022). Raw materials employed
for such purposes involves, plant and animal proteins as
well as carbohydrates among others [23, 94, 137]. Keratin
based materials holds promising potential owing to their
biological and physiochemical properties as well as avail-
ability as a cheap source in the form of waste [19, 92]. The
keratin could be obtained from feathers, wool, hair, nails
and horns and could be fabricated into variety of materi-
als such as films, fibres, scaffolds, sponges and hydrogels
[103]. Keratin waste including millions of tons of feathers
accounts for a huge fraction among the waste generated
worldwide per year [101, 111]. Thus, utilizing keratin
waste for biomedical applications is of great interest. This
review summarizes the structure, extraction strategies

and various biomedical applications of keratin-based bio-
materials. Although the review articles published until
recently have highlighted the important physical and
biochemical properties of keratin as well as their possible
biomedical applications, the current article shall provide
an exhaustive and updated information on the recent
research and studies exploring various biomedical appli-
cations of keratin biomaterials including wound healing,
drug delivery, oral tissue regeneration, nerve regenera-
tion among others.

Structure, sources and properties of keratin

Keratin is an insoluble fibrous protein that makes up the
cytoskeleton and epidermal structures in humans and
animals including hair, horns, wool, feathers, claws and
nails among others [53]. Based on the source, keratin
presents variation in structure and properties but could
be broadly classified as hard and soft keratin. The disul-
phide bridges between the cysteine molecules are mainly
responsible for the stability and integrity of the protein
structure in keratin. The hard keratins having more sul-
phur (cysteine) content and thus more disulphide link-
ages providing toughness to epidermal structures [33,
111]. Whereas the soft keratins have less sulphur content
and is responsible for imparting elasticity to the epithelial
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tissue [20]. The hard keratins from various sources have
been mostly employed for the fabrications of biomateri-
als such as films, hydrogels, fibres and sponges [12, 13,
40, 86]. The polypeptide in keratin could be arranged
either in a helix or - fold. The a helical conformation
results in good elasticity whereas the van der waals forces
and hydrogen bonds in p- sheets are responsible for
high tensile strength. The occurrence of o keratin is pre-
dominantly reported in hair, claws and hooves of mam-
mals whereas that of [ keratin is seen in feathers, scales
and beaks of birds and reptiles. Based on their molecu-
lar weight and overall charge, keratins are classified as
Type I (acidic and smaller) and Type II (basic-neutral
and larger). Type I and Type II keratins interact with each
other by forming heterodimers in the initial stage and
then assembling into complete intermediate filaments
(Fig. 1).

The inherent key properties of keratin that makes them
usable in biomedical applications includes ability to self-
assemble, biocompatibility, biodegradability and support
to cellular proliferation [107, 139]. Reports are also avail-
able that shows the anti-bacterial and haemostatic prop-
erty of keratin [60, 108, 131].

Keratin extraction methods

Multiple methods are available for the extraction of kera-
tin from various sources. These extraction methods rely
on breaking the disulphide bonds responsible for the sta-
bility of the protein structure. These extraction methods
could be chemical, physical or biological. Major physical
methods include high-pressure hydrolysis method, high-
temperature hydrolysis method, high-pressure puffing
method and extrusion method. Disadvantages of physi-
cal methods of keratin extraction includes destruction
of primary structure of the protein as well as high energy
input. The chemical extraction of keratin on the other
hand can be done by oxidation methods, reduction meth-
ods or by acid—base treatments (Alahyaribeik et al. 2020).
For the enzymatic isolation of keratin, keratinases from
actinomycetes and fungi could be utilized. Reports are
also available to extract keratin by using microwave irra-
diation, ionic liquids as well as steam explosion. Extrac-
tion methods of keratin from various sources employing
different methods are summarized in Table 1.

Physical methods

Under physical methods of keratin extraction, high pres-
sure and temperature during hydrolysis has been used.
Although it is a convenient method but the extracted
keratin is completely degraded into amino acids and
peptides thus destroying the primary structure and ren-
dering it unsuitable for biomaterial preparation [84].
Another disadvantage of high pressure or temperature
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hydrolysis is excess of power consumption. Alternate
physical method for keratin extraction is steam explo-
sion in which high pressure steam is enforced into a con-
tainer with the raw materials. Steam explosion has been
studied on wool degradation and it has been observed
that almost 62% of wool degradation could be achieved
by stem at higher temperatures of about 600 °C [114].
Higher rates of keratin decomposition could be achieved
with increasing processing time, temperature and pres-
sure [41].

Chemical methods

Acid-alkali treatment

Employing strong acids such as hydrochloric acid and
sulphuric acid for the hydrolysis of keratin involves the
treatment of keratinous waste for a given period of time,
neutralization and further drying and purification to
achieve final dried product [7, 12, 13]. The time employed
for hydrolysis dominates the molecular weight compo-
sition of the extracted keratin, an increase in hydrolysis
time results in lower molecular weight protein chains
[87]. As a result of prolonged acid hydrolysis, certain
amino acids such as tryptophan are degraded, moreover
the leftover acid waste with is cumbersome to handle and
dispose.

As far as use of alkali for the hydrolysis of keratin is
concerned, the loss of amino acid is not observed [12, 13].
Treatment with alkali weakens the mechanical properties
of keratin and thus renders it unsuitable for film forma-
tion [21]. Alkali such as Ca(OH), KOH, NaOH have been
studied for the hydrolysis of wool keratin. Combination
of Acid and alkali for the hydrolysis of keratin have also
been explored and found to be more effective [21, 30].

Oxidation

Oxidizing agents such as peracetic acid, performic acid,
hydrogen peroxide, peroxyacetic acid, peroxyformic acid
have found their use in keratin extraction. These com-
pounds break the disulphide bonds to yield keratoses
which predominantly have a crosslinked structure stabi-
lized by noncovalent interactions and depict hygroscopic
behaviour [132]. The keratoses are further subdivided
into «- keratoses, [P-keratoses and y-keratoses based on
their solubility in ammonia and their region of origin
from the keratin tissue. a- keratoses could be which are
derived from cortex region are soluble in ammonia and
could be precipitated at acidic pH. B-keratoses, derived
from cuticular region are insoluble in ammonia whereas
y-keratoses are soluble in ammonia but are not pre-
cipitated at acidic pH [132]. Disadvantages of oxidation
method include loss of certain amino acids such as phe-
nylalanine, tyrosine, tryptophan among others as well as
long treatment times [86].
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Fig. 1 Human hair keratins and their interactions. a Structure of KRT 85 derived from AlphaFold protein structure database. b Binary interaction

of KRT85 with KRT38 drawn with IntAct database. ¢ Binary interaction chart of KRT85 with 25 other proteins involving type 1 hair keratins and other
proteins, retrieved from UniProt (ID P78386). d Network showing multiple interactions between different keratins and keratin associated proteins
from homo sapiens involved in the formation of hair retrieved from STRING database

Reduction

This is the most commonly used method of keratin
extraction. Reducing agents used for breaking the disul-
phide linkages are p-mercaptoethanol and other thiols
in combination with denaturing agents like urea and
thiourea [54, 95]. Upon reduction in alkaline medium
soluble protein known as kerateines are formed. Cer-
tain protocols also employ the use of sodium dodecyl

sulphate and other surfactants along with reducing
agents to increase the stability of the keratins in solution.
This use of f-mercaptoethanol poses threat as it is toxic
in nature thus sodium disulfite could be used as an alter-
nate although it gives lesser yields. Urea in high concen-
trations disrupts the protein framework in keratin by
hindering with the hydrophobic interactions and thus
enhancing the action of reducing agents. The reducing
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Table 1 Recent advances in extraction methods of keratin from various sources

Method Source Protein yield (%) Properties of protein extract Reference

Chemical methods

Acid-Alkali Treatment Wool - An average diameter of extracted [19, 124]
keratin protein found was 25nm
and length of less than 3 um.
These nanofibers constitute mainly
a-helical proteins. Extracted keratin
nanofibers have a uniform circular
cross-section like morphology.

Chicken feathers 53.78% White chicken feather keratin [97]

hydrolysate had pH 11.0, was solu-

ble in nature with 1.0837 g/ml

density while black chicken feather
hydrolysate had pH 12.0,1,0911 g/

ml density and limited solubility.

The isolated keratin possessed
primary and secondary amine.

Oxidation Tannery Sheep Hair 91.50% Extracted keratin has molecu- [76]
lar weight ranging from 3-15
kDa with amorphous structure
and XRD peaks at 2© values 9.36°
and 21.16° due to the presence
of a-helix and - sheet structures.

Reduction Human hair 73% Dialyzed protein consists mostly ~ [118]
of alpha structural keratins.

Chicken feathers 66.45% Keratin proteins possessed semi-  [4]
crystalline nature with rough
surface morphology.

lonic Liquid Treatment Sheep wool - The regenerated keratins con- [35]
sisted of low sulphur keratins
and fractions of matrix proteins,
with improved thermal properties
compared to raw wool.

Wool, hair and chicken feather 1-Butyl-3-methylimidazolium [120]
chloride was used in one step
process to composites of cellulose
and keratin. Dtrongest bactericidal
effects were recorded in feather
composites.

Biological methods

Enzymatic hydrolysis method Chicken feather 76.20% Protease enzyme was used in com-[3]
bination with alkali treatment.
Maximum yield was obtained
with 5%NaOH, 5% KOH and 2%
protease concentration.

Chicken feather - Feather meal produced by crude [49]
keratinase enzyme of Bacil-
lus pumilus AR57 was rereported
to be rich in essential amino acids.
The isolated keratinase was found
to be stable for 3 hours.

Chicken feather - Keratinase from Streptomyces [1]
netropsis A-ICA and Bacillus
subtilis ALICA showed optimum
feather degrading abilities at pH
values 7 and 7.5 at 25 and 30° C
respectively.
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Method Source

Protein yield (%)

Properties of protein extract  Reference

Microbial treatment

Chicken feather -

Physical methods

Microwave irradiation Wool

Steam explosion Porcine hoof shell

Thermal hydrolysis or super- Hog hair 70%

heated water extraction

Chicken feather 428

Keratin hydrolysates were clear [130]
and composed of peptides

with molecular mass ranging

from 800 to1079 D, suitable

for application in cosmetics.

Streptomyces griseoauran- [74]
tiacus AD2 depicted highest
keratinolytic activity followed

by Streptomyces albidoflavus AN1

and Streptomyces drozdowiczii AD1.

Extracted keratin retained the pep-[28]
tide chain structure. Obtained

wool keratin showed small particle
size with low crystallinity (12.3%).

This method disturbed the stabil-

ity of the a-helix and the 3-sheet
structures resulting in random coil
structures.

Main components of the liquid ~ [113]
protein fraction were short pep-

tides (< 2 kDa, 84.72%) and amino

acids (1.68 mg/mL), suitable

as peptone substitute for fermen-

tation culture.

The amount of cystein reduced ~ [121]
in the protein hydrolysate

as the disulphide bond breaks

at high temperature and sulphur

is released as hydrogen sulfite. The
original tertiary structure in alpha
keratins and matrix proteins were
reported to be lost after Thermal
hydrolysis process (THP)

methods have been predominantly for keratin extrac-
tion with varied concentrations of urea and other com-
ponents from sources such as feathers, hair, horns and
hooves [54, 80].

lonic liquid treatment

Ionic liquid are salts or cationic/ anionic compounds
that exists as liquid at room temperature and possess
strong solubilizing properties as they could disrupt the
intermolecular hydrogen bonds present in the natural
polymers [12, 13, 43]. These liquids have been studied
for use in the extraction of keratin from chicken feather
and wool. In comparison to acids and alkali, ionic liq-
uids are eco-friendly, non- corrosive and non- flam-
mable. Ionic liquids are often used in combination with
chemicals such as sodium bisulfite that could break
the disulphide linkages and also reduces the duration
of the treatment. Ionic liquids such as BMIM +Cl- and
1-allyl-3-methylimidazolium chloride could be used
to extract keratin at high temperatures of up to 130 °C
[25] 19% vyield of keratin from human hair have been

reported with 1-allyl-3-methylimidazolium chloride
[133, 135], and reduced solubility have been reported in
BMIM +ClI- [112].

Biological/ enzymatic methods

Biological extraction or solubilization of keratin have
been reported by the use of micro-organisms as well as
purified enzymes. In comparison to chemical method
of keratin extraction, biological methods are safer and
results in lesser loss of amino acids along with being
energy efficient method, as input of energy in the form of
higher temperatures or pressure is not desired. But use of
microorganisms and purified enzyme preparations make
these methods costlier [52]. Bacillus isolated from poultry
waste and soil, Amycolatopsis Chryseobacterium, Strep-
tomyces, Staphylococcus, etc., are known to be keratin
degrading [2, 5, 115, 116]. In addition to bacteria certain
fungal species (Aspergillus flavus, Aphanoascus fulves-
ence, Microsporum gypseum) have also been studied for
this purpose [7, 75]. Use of urea with microorganism have
also been reported to achieve higher keratin yields.
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Keratinases enzymes from Apergillus, Lysobacter,
Bacillus, and Streptomyces genera could be used for
keratin extraction [116]. Different molecular weight kera-
tin fractions could be prepared depending upon the pH,
temperature and exposure time [22].

Biomedical applications of keratin biomaterials
Wound healing

Wounds can arise from several factors such as severe
injuries, major surgeries, diabetes, or vascular illnesses.
Wound healing involves different types of cells such as
fibroblasts cells, keratinocytes, various immune cells and
vascular endothelial cells. Certain wounds do not heal
in short time with normal clinical care and may bother
the patients for months or even years. The accelerated
healing in such challenging wounds could be achieved
by application of biomaterials based on protein matri-
ces. Collagen and keratin are the major components of
the human skin that have gained interest in recent time
to prepare biomaterials capable of accelerating heal-
ing in such chronic wounds. These biomaterials gener-
ally deliver materials such as growth factors, proteins or
other molecules that could expediate the wound healing
process. Keratin is present as filament in keratinocytes
cells of the epidermal layer of the skin. Apart from pro-
viding mechanical strength, it also plays significant role
in cell signalling. Keratins undergo post translational
modifications and interact with various signalling pro-
teins in order to perform the functions including cell
migrations, adhesion and differentiation [104]. According
to reports, keratin also plays a vital role in activation of
keratinocytes that is an important step in normal wound
healing process. Various types of keratin-based bioma-
terials employed for wound healing involves nanofib-
ers, membranes, hydrogels, scaffolds and dressings. The
keratin alone or in combination with polyurethane, PVA
and cellulose have recently been reported to form these
biomaterials. In a recent study, Ramey et al. [93] pre-
pared human hair keratin matrices and explored their
usage in wound healing in diabetic mice. Comparison
of these keratin matrices was also made with amniotic
membrane, bovine dermis and porcine decellularized
small intestinal submucosa for wound healing purposes
(Fig. 2). The authors reported these matrices to be thin
with smooth and uniform surface morphology. Human
epidermal (HEKa) keratinocytes when grown on keratin
matrices showed upregulation of Interleukin 6 (IL-6) and
Macrophage Inflammatory Protein-1 delta (MIP-19), that
plays an important role in wound healing by modulating
inflammatory response and promoting fibroblast migra-
tion. In vivo studies suggested that the wound size was
smaller in mice that were treated with keratin matrices
then those treated with amniotic membrane after 3, 4
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and 5 weeks. Keratin based applications of biomaterial
formation and utilization for wound healing has been
summarized in Table 2.

Drug delivery

The term ‘Drug delivery’ defines the administration of
any pharmaceutical compound to achieve therapeu-
tic effect in humans or animals [38]. There are various
techniques adopted by scientists to deliver these com-
pounds effectively and safely to the target site in the body
of human in correct concentration [29]. The aim of the
drug delivery system is to enhance the efficacy, safety and
bioavailability with minimized side effects to target tis-
sue. This area covered many aspects including route of
administration, targeted delivery, formulation technolo-
gies and biological barriers. The biocompatible nature of
keratin has attracted researchers to exploit it in the appli-
cations involving designing of drug delivery systems [31].

Hydrogels and nanogels derived from proteins are lipo-
philic in nature but they do not dissolve in water instead
they swell up after coming in contact with water. They
have excessive drug loading capacity and are able to ame-
liorate cellular uptake efficiency [127]. Keratin biomateri-
als are loaded with drugs and used as a carrier because
they act as a covering shield and protects encapsulated
drugs from degradation in the physiological environ-
ment, before reaching the target site. Keratins also have
the ability to bind effectively with various bioactive com-
pounds, maximizing drug stability and providing con-
trolled release [126, 149].

Keratin naturally possess cysteine-containing residues
and ample of thiol groups, these sulthydryl groups of
keratins form a disulfide bond with a desired drug and use
it as a carrier for selectively drug release under reducing
circumstances. Additionally, it also possesses a lysine and
arginine group that can be elicited by a known protease
trypsin which is an essential enzyme generally augmented
in tumor tissues [149]. Different biomaterials have been
formed including nanogels (with hyaluronic acid and
sodium alginate), hydrogels, nanofibers, microparticles,
nano fibrous mats, nanotubes and nanoparticles like kera-
tin/CHX NPs (keratin/chlorhexidine complex), by using
various methods such as nanoprecipitation, self-assembly,
de-solvation, iconic gelation and aggregation. Liu (2024)
used keratin as an envelope of antitumor drug and used as
a drug delivery agent in tumor chemotherapy.

Recent innovations in this area focus on smart drug
delivery systems, biologics (i.e. monoclonal antibodies)
and nanotechnology. Currently, these advancements are
very crucial to treat any disease more effectively with
minimizing side effects and improving patients’ health.
Recent advancements on the role of keratin in the drug
delivery systems are summarized in Table 3.
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on mice treated with control (black circle, n=16), porcine small intestinal submucosa (blue square, n=16), or HKM (gold triangle, n=16).

Symbols indicate statistical significance of HKM compared to other treatments: *p < 0.05 vs. control, **p < 0.01 vs. control, ****p <0.0001 vs.
control, *p <0.05 vs. corresponding comparative advanced wound care product, #p <0.01 vs. corresponding comparative advanced wound care
product, ##p <0.0001 vs. corresponding comparative advanced wound care product by two-way analysis of variance (ANOVA), paired by mouse,
with Tukey’s multiple comparisons at each timepoint [93]. Creative Commons Attribution License

Oral tissue regeneration

Keratin have found a place in various ways pertaining
to the production and utilization of biomaterials appli-
cable in oral tissue or bone regeneration. A post opera-
tive infection in dentine region, damage to alveolar
bone, wound healing and degeneration in pulp dentine

are some of the scenarios exploiting remarkable biologi-
cal properties of keratin to form bio composite materi-
als. Wound repair in oral cavities takes 2—10 days to heal
and it requires processes such as epithelial cell migration,
proliferation and cell plasticity. Trans-differentiation of
epithelial cell resulting from persistent inflammation is
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Composition Keratin source Biomaterial type

Properties and function

References

Tragacanth gum and keratin Chicken feather Nanogel

Chitosan and keratin Chicken feather Hydrogels

Poly butylene succinate (PBS) and keratin Wool, hair and nails  Nanofibers

Lipids and keratin microparticles Porcupine quills Microparticles

Keratin and polybutylene succinate (PBS) Wool Nanofibrous mats

KAPs (keratin-associated proteins) and KIFs Human hair Keratin nanoparticles
(keratin intermediate filaments)

Keratin/chitosan/glucosamine sulfate (KRT/ Multi-walled carbon
CS/GLS) nanotubes (MWC-
NTs)

Nanogels with cinnamon as herbal extract
and enclosed by cotton fabrics depicted
antibacterial activity against both gram

+ve and gram -ve bacteria. Nanogels were
reported to be biocompatible. Release of cin-
namon extract is reported to be concen-
tration dependent and follows first order
kinetics.

Hydrogels with keratin chitosan ratio

of 3/2 displayed most efficient controlled
release of two drugs viz. Rhodamine B

(RB) and Bovine Serum Albumin (BSA). At
27 °Cand 7.4 pH, a maximum cumulative
release of 81.7% and 31.2% for RB and BSA
respectively was recorded. Approximately,
the attainment of equilibrium was achieved
after 8 hours for RB and 44 hours for BSA.

Electrospun nanofiber mats formed with PBS
and keratin by using hexafluoro isopropanol
as blending solvent showed increased
release rate of Rhodamine B with increase

in concentration of keratin. The blend
solutions of Keratin/PBS displayed non-
Newtonian behaviour, with 70/30 and 30/70
ones possessing thinner mean diameter

in nanofibers owing to better orienta-

tion of polymer chains under shear stress.
Electrospun mats with higher PBS content
had improved thermal and mechanical
properties.

Produced microparticles showed 29.83%
antioxidant activity. Lipid coating of keratin
microparticles increased antibacterial activity
for about 55% against E. coli and Staphylo-
coccus aureus. Lipid-loaded erythromycin
further improved the antibacterial properties
once carried on surface of keratin micropar-
ticles.

Ker-PBS 50-50 electrospun nanofibrous mats
loaded with 23 wt.% of diclofenac released
165.2+38.3 and 307.8+24.4 ug/cm? after 6
and 8h respectively.

The current study revealed that KAPs/KIFs
ratios directly act upon properties and struc-
tures of keratin nanoparticles. the authors
observed that higher concentration of KAPs
offers higher repulsive force between parti-
cles and minimizing their aggregation poten-
tial. Reversely, increase amount of KIFs offers
weak repulsive force and smaller particle size
and able to maximize theophylline release.

Produced composites have amorphous
nature with high thermal decomposition
temperature of 420 °C. MTT assay revealed
maximum concentration of MWCNT-GLS/
CS/KRT nanocomposites showed 83% cell
viability in RAW 264.7 cells.

(73]

[143]
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Table 3 (continued)
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Composition Keratin source

Biomaterial type

Properties and function References

Alginate, chitosan, and tripolyphosphate Chicken feathers

(TPP)

B-cyclodextrin (3-CD), keratin (K), Insulin (IN)
and dialdehyde glucan (DG)

Human hair

Xanthan/gelatin (XG) and keratin/xanthan/
gelatin (KXG)

Microparticles

Nanoparticles

Hydrogels

Encapsulation efficiency of 69.24% 11471
was recorded for amoxicillin in keratin

and TPP microparticles with a gradual release

of up to 96% in 6 hours'time. In comparison

to pure amoxicillin the drug loaded micro-

particles depicted increased antibacterial

activity against both E. coli and S. aureus

because of controlled and prolonged drug

release.

Keratin based (3-CD-K-IN-DG) NPs had high
drug loading capacity (32.81%), high encap-
sulation efficiency of 98.52% and has the
ability to protect insulin from enzymatic
and acid degradation. NPs assisted in pro-
longing the residence time and controlled
release of insulin leading to a maximum oral
bioavailability of 12.27% and high hypogly-
caemic effect in type 1 diabetic rats.

[134]

Hydrogels produced by crosslinking of xan-  [24]
than, gelatin with glycerol in different ratios

and loaded with vitamin C. Addition of kera-

tin with xanthan, gelatin, glycerol (1:1:2) gave
water vapour transmission at the rate 4523

+133 gm-2d-1,improved L929 fibroblast
viability and maximized protein release. Vita-

min C increased collagen synthesis in L929
fibroblasts and was released for 100 hours
showing inhibition of bacterial growth.

called type 2 EMT (Epithelial-Mesenchymal Transition).
Vimentin is the biomarker for Type 2 EMT, which indi-
cated that keratin induces EMT in the oral keratinocytes
and enhances migration of cells. Thus, human hair kera-
tin could serve as an excellent material to form bioma-
terials with varied properties and functions. Moreover,
the alveolar bone that provides support to the tooth may
undergo loss and degeneration as a result of various fac-
tors. In order to replace the lost tooth, dental implants
need proper dimensions of this alveolar bone with
required surface area for implantation. With damaged
alveolar edge, the success of implants could be reduced.
Keratin biomaterials among others have been reported
to promote regeneration of alveolar bone. Another area
involves utilization of stem cells including Dental pulp-
derived stem cells (DPSCs) to generate pulp-dentine like
tissue. Collagen and keratin have been used in form of
scaffolds to induce differentiation in DPSCs through cell
homing and providing binding sites [110]. Keratin com-
posite membranes could also be employed to release
antibacterial agents at a control rate in order to prevent
postoperative infections. Latest researches exploring
the potential use of keratin biomaterial for various den-
tal applications are summarized in Table 4. In a notable
study by Feroz & Dias [34], Scaffolds were prepared from
sheep wool keratin, hydroxyapatite and hydroxypropyl

methylcellulose which depicted cytocompatibility with
osteoblast cells and could be employed for alveolar bone
regeneration (Figs. 3 and 4).

Tissue engineering

Tissue engineering comes to safeguard in situations
where conventional medicine systems render to be
incompetent, such as failure of function or loss of a
particular tissue or organ. Success of tissue engineer-
ing relies on the fabrications of scaffolds or other forms
of biomaterials that could effectively replace the original
tissue/ organ. Various biomaterials being explored for in
this regard involves nanoparticles, nanofibers, films and
hydrogels [37, 69-71, 100]. Hydrogels are most com-
monly being employed for tissue engineering because
they could most effectively bio-mimic as well as can be
designed into variety of different structures according
to specific needs [6]. Owing to their three-dimensional
cross-linked network and hydrophilic characteristics,
hydrogels have the ability to absorb and retain large
amounts of biological fluids [72]. Disulfide bonds in
the keratin structure provide it with high mechanical
strength, moreover it its non- immunogenicity makes it a
suitable candidate for tissue engineering. The amino acid
sequences of keratins are known to interact with integ-
rins such as glutamic acid-aspartic acid-serine (EDS), and
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Table 4 Advances in the use of keratin biomaterial for oral tissue regeneration
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Composition

Keratin source Biomaterial type

Properties and function

References

PEG-g-keratin

PLGA and keratin

Mineralized keratin

keratin/hydroxyapatite (HA)/
hydroxypropyl methylcellulose
(HPMQ)

Keratin and Fibrinogen

keratin/hydroxyapatite

Keratin and Titanium

Human Hair

Wool

Nano keratin

Sheep wool

Human Hair

Wool

Wool

Powder

Ornidazole loaded membrane

Nanoparticles

Scaffold

Injectable Hydrogels

Keratin/hydroxyapatite (keratin/HA)
scaffold

Keratin coated titanium surface

Keratin has the potential to enhance
monolayer wound healing using HOKs
(human oral keratinocytes). PEGylated
keratin treatment has demonstrated
no toxicity to periodontal fibroblasts
or dental keratinocytes.

These membranes inhibited growth

of Porphyromonas gingivalis, Fuso-
bacterium nucleatum and Peptostrep-
tococcus anaerobius. Also promoted
growth of human periodontal ligament
fibroblasts.

Cultivation of DPSCs with mineralized
keratin resulted in more extracellular
matrix proteins interaction with cul-
ture interface. The number of cells
also increased.

The scaffold has highly porous intercon-
nected structure with average pore size
of 108.36nm. These scaffolds also pos-
sessed cytocompatibility with osteo-
blast cells, having ability to regenerate
alveolar bone. (Fig. 3, 4)

Depict cytocompatibility with human
gingiva fibroblasts (HGF) cells. Free
flow of biological fluids, cell migra-
tion and growth were also absorbed
inside these hydrogels.

Osteocalcin or Bone Gla Protein

was detected in the Saos-2 cells cultured
on these scaffolds, moreover these

cells could be seen adhering, migrating
and proliferating in the scaffolds.

Solution casting gave a thick covering
of titanium while molecular graft-

ing resulted in discontinuous coating
of titanium.

(56]

[150]

Fig. 3 General Appearance of Keratin/HA/HMPMC scaffolds (diameter: 15 mm, height: 5 mm) (A & B), SEM micrographs of Pure keratin scaffolds (C)
and Keratin/HA/MPMC scaffolds (D). (Size bars in Fig. 4 C & D represents 100 um). Feroz & Dias [34]; Creative Commons CC-BY-NC-ND



Shubha et al. Biotechnology for Sustainable Materials (2024) 1:16

Page 15 of 27

24 h

48 h

72 h

Keratin / HA / HPMC

Fig. 4 Fluorescence images of keratin (A, B, C) and keratin/HA/HPMC scaffolds (D, E, F) seeded with Saos-2 cells after live/dead viability assay.
Images shows Saos-2 cell viability at 24 h, 48 h & 72 h. Bar=100 pm. [34], Creative Commons CC-BY-NC-ND

leucine-aspartic acid-valine (LDV) and others [129]. One
more advantage of using keratin for generation of tissue
engineering biomaterial is that the animal cells mostly do
not contain the keratinase enzymes so the in vivo break-
down of this protein like other does not occurs. The gen-
eration of keratin-based hydrogels generally requires a
cross-linking agent such as transglutaminase, dialdehyde,
formaldehyde, glutaraldehyde, ethylene glycol diglycidyl
ether [10, 27, 82, 123, 142].

Application of keratin biomaterial is being studied for
the regeneration of skin tissue regeneration, vascular tis-
sue regeneration and skeletal muscles regeneration spe-
cifically volumetric muscle loss (VML). Minor injuries
as a result of exercise or strain in skeleton muscle could
be repaired by the intrinsic mechanism of self — repair
involving multiple cell signalling events, but major mus-
cle loss following a trauma or surgical intervention
results in disturbances in signalling cascade leading
to long term loss of structure and function [89]. Use of
allografts, muscle flaps are adopted for volumetric mus-
cle loss treatment but has their own drawbacks. Keratin
based scaffolds and other biomaterials constructs are
being designed and studied for the purpose of restoring
functional loss in VML as well as other tissue engineering
applications (Table 5).

Peripheral nerve regeneration

Peripheral nervous system (PNS) helps the body to feel
sensations and move the muscles. PNS works as a bridge
between central nervous system and various tissues or
organs [138]. The fundamental units of nervous system

i.e. neurons are made up of bundles of axons which forms
the peripheral nerves. The types of injuries that can
affect the PNS includes neuropraxia, axonotmesis, or
neurotmesis. Although the PNS has the capacity to self-
repair, but in cases of delayed treatment, severe injury
or an injury larger then 3 cm leads to incomplete repair
and loss in functionality [64]. In order to regenerate the
damaged peripheral nerve, various nerve tissue grafts are
being studied including autografts, allografts and xeno-
grafts, among which autografts are considered to be the
most efficient. Nevertheless, there are certain limitations
to nerve grafts including limited availability, surgical
complications, immune rejection and diameter mismatch
between the donor and recipient nerve to name a few
[136]. More recent alternative to nerve grafts includes the
artificial nerve conduits made up of biological polymers.
Nerve conduits help to fill the nerve gap resulting from
nerve injury by guiding the axon regeneration and thus
improving the efficiency of the clinical treatment. Differ-
ent nerve conduits with added functionality of drug and
growth factor delivery, capacity to support cell prolifer-
ation as well as conductivity with design specific to the
particular function are being developed [62, 140, 141].
Similarly other types of biomaterials including mem-
branes have found potential use in regeneration of PNS
injuries.

The chitosan/keratin biomimetic composite membrane
prepared by [11] depicted potential for angiogenesis and
nerve repair efficiency [55]. Fabricated tubular nanofib-
ers with keratin extracted from chicken feather and PVA
by using electrospinning, to be used as nerve conduits.
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These nanofibers had diameter ranging from 170 to
234 nm. The authors also reported a decrease in diameter
of the nanofiber with increase in concentration of keratin
[39] reported that the human hair keratin can promote
the extension of axon in Dorsal root ganglion neurons
in vivo. The authors prepared a keratin sponge and also
suggested that these could enhance the cell adhesion,
proliferation, migration and secretion of neurotrophic
factors by Schwann cells in vitro [144] studied spinal cord
injury (SCI) in rat models and reported that keratin bio-
materials can induce polarization of macrophages and
promote functional recovery.

Promoting macrophages to move towards M2 anti-
inflammatory phenotype is regarded as a target to treat
the SCI [152] studied the anti-inflammatory activities
of 17 human hair keratins, the authors have found that
recombinant keratins 33A and 35 demonstrated supe-
rior anti- inflammatory properties. The authors also
established the role of recombinant keratin 33A in nerve
regeneration and increasing M2 polarization by working
with rat T9 spinal cord lateral hemisection model and
utilizing keratin nanofibers.

¢ s
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Qin et al. [90] used activated Schwann cells with
human hair keratin to prepare nerve grafts. The nerve
grafts thus produced, promoted the nerve conduction
function as well as motor function in rats with sciatic
nerve injury due to increased expression of nerve growth
factors, thus could be applicable in healing peripheral
nerve injuries. In yet another more recent research [119],
Explored the potential of curcumin to promote periph-
eral nerve regeneration. The researchers exploited the
properties of keratin/ chitosan hydrogel to effectively
deliver the curcumin to the target site in appropriate con-
centration. The hydrogels were found to be capable of
delivering the curcumin for 10 days in vitro. In rat studies
also, the hydrogel was found to be capable of enhancing
nerve regeneration (Fig. 5).

Ocular surface reconstruction

Ocular surface reconstruction means repairing the
eye’s tissue such as cornea, conjunctiva and limbus and
restoring the vision of eyes. Ocular surface reconstruc-
tion often become necessary in case of damage caused
by various factors including trauma, infections, chemical

Fig. 5 Schematic diagram of keratin chitosan hydrogel synthesis process loaded with curcumin, cell adhesion in complex hydrogel, complex
hydrogel promotes repair of peripheral nerve injury. Sun et al,, (2023); Creative Commons CC-BY
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burns, surgical complications and autoimmune diseases.
The ultimate objective of this technique is reconstruct-
ing vision, alleviating pain and prevention from further
damage. As already stated, keratin is known for its bio-
compatibility, biodegradability and ability to promote cell
proliferation, cell division and cell adhesion it has now
gained attention of researchers in the application of ocu-
lar surface reconstruction. This can be achieved by cre-
ating scaffolds, membranes and fibrous mats to repair
and regenerate ocular surface tissue. Keratin-based bio-
materials provide a supportive structure to promote cell
proliferation and cell migration of corneal and conjunc-
tival epithelial cells. These materials have mechanical
properties which are similar to the native ocular sur-
face and facilitate in healing and integration. Owing to
its anti-inflammatory effect, keratin can provide a more
conducive environment for tissue healing and reduce
inflammation in the ocular surface. The research on the
exploitation of keratin for ocular surface reconstruction
is still evolving with ongoing studies exploring its full
potential and optimizing the application processes. How-
ever, current results are promising and indicate that kera-
tin and keratin-based biomaterials could become an ideal
tool for ocular surface reconstruction. Generally amni-
otic membrane is applied as an alternative substitute
during ocular surface reconstruction. Additionally, dexa-
methasone eye-drop is continuously required to supress
inflammation and fast recovery rate after surgery.

Schwab & Reichl [105] successfully developed keratin
films incorporated with dexamethasone drug. They used
different concentrations of dexamethasone, and their find-
ings suggest that prepared films with moderate dexameth-
asone gives satisfactory positive results as they influenced
the biochemical properties and transparency of the films
whereas highly loaded films showed exact similar result to
those of amniotic membranes. The authors also compared
these films with amniotic membranes and found that
developed films could be a promising alternative to be
used in ocular surface reconstruction [9]. Also compared
keratin films with amniotic membranes by using ofloxa-
cin and dexamethasone eye-drop externally on the regu-
lar intervals instead of incorporating in the membrane.
The experiments involved use of amniotic membranes
and keratin films separately in white rabbits and recorded
the results after a period of 10 days. The eyes of rabbits
treated with keratin films were reported to be completely
healed without any neovascularization and those treated
with amniotic membranes showed neovascularization on
seventh day however, it recovered on tenth day.

Haemostatic agent
In case of any injury or cut, the loss of blood from the
body is stopped by the formation of blood clot. The
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sequence of regulated events leading to the formation
of blood clot is known as hemostasis and the agents that
participate in hemostasis are called hemostatic agents.
In case of a major bleeding or accidental situations,
hemostasis may not be efficient enough and that could
even lead to the death of the patient. Advance and new
hemostatic technologies are continuously being devel-
oped to tackle uncontrolled hemorrhage in an emer-
gency, battlefield and surgical conditions. Hemostasis
involves activation of signaling pathways to clot the
blood, including platelets and other proteins like fibrino-
gen and thrombin.

Although, many hemostatic agents, adhesives, and
sealants are available in the market. But developing an
ideal hemostatic agent with multiple properties such as
effective and immediate management of bleeding, bio-
degradability, biocompatibility, appropriate mechanical
properties, strong adhesion property, antibacterial activ-
ity, easily manageable in wet and dynamic conditions and
many more still remains a huge leap. Keeping these con-
ditions in mind, researchers have used keratin as a hemo-
static agent because it is a versatile compound that has
all these characteristics. Keratin activates platelets and
other important proteins directly as it promotes plate-
let adhesion and aggregation. It can be used to produce
physical scaffolds that supports the formation of blood
clot. Scaffolds trap blood platelets and RBCs which con-
tribute to the formation of a stable clot and can efficiently
seal the injury and stop bleeding. Keratin can be isolated
from different source material and processed into various
forms such as sponges, powders and films which can be
applied to wounds and on an injury directly. These mate-
rials enhance hemostasis as they can absorb blood imme-
diately, aggregate clotting factors and provide a suitable
environment for clot formation.

Goudarzi et al. [42] successfully developed keratin
crosslinked sponges with the help of glutaraldehyde
by utilizing freeze-drying technique. They performed
experiments on human foreskin fibroblasts cells and
suggested that developed sponges were able to absorb
91% of water and had good cell viability resulting into
blood clotting and major liquid absorption. The authors
also observed that prepared sponges were capable to be
used in haemostasis [32]. Used freeze-gelation method
to prepare composite scaffolds of methylene blue-loaded
keratin and alginate. Developed composite scaffolds
could absorb over 1600% liquid effectively, had good bio-
degradability, high biocompatibility and well intercon-
nected pores. The researchers concluded that composite
scaffolds of keratin and alginate work synergistically on
wound and significantly minimizes haemostasis time.
They also reported that the drug loaded into devel-
oped scaffolds prevent infection by absorbing wound
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secretions and increase burst release at the early stages
of wound recovery.

Chen et al. [14] worked on keratin polymers (high and
low molecular weight keratins) i. e. KIFs and KAPs. They
used a combination of both proteins in different ratios to
precipitate fibrinogen and reported that equal amount of
KIFs and KAPs participate in haemostasis as it yielded
highest accumulation of fibrinogen protein [136]. Uti-
lized a novel approach viz. recombinant synthesis for
maximizing the performance of keratin in haemostasis.
They adopted those a- helical keratin sequences which
are responsible for haemostatic activities and noticed
that amino acids found on N-terminal of a- helices (such
as Tyr, Phe and Gln) residues are very important in fibrin
polymerization. The researchers also mutated the Cys-
tine to Serine residues on a-helices and found a positive
results in haemostasis. High efficiency keratin biomateri-
als could be produced by exploring such strategies with
improved potential over gelatin sponges. In another
study from [140, 141] also reported that keratin/chitosan
sponges with porosity 90.12+2.17% have potential to
work as haemostatic agent [66]. Successfully developed
KAPs nanoparticles from KAPs fragments extracted
from human hairs and used these KAPNPs as haemo-
static agent. Their researchers reported that KAPNPs
have great potential, good biocompatibility and mini-
mum clotting time.

Miscellaneous

Valkov et al. [128] prepared keratin films from human
hair with structural similarity to human nail plate. The
authors reported that the keratin films could be used as
a model for studying onychomycosis. Also after infect-
ing the dermatophytic fungi Trichophyton rubrum, the
growth was observed on the surface of the film and the
fungi was also able to penetrate inside the films [125]
studied the use of chicken feather keratin as a template
to produce silver nanoparticles (AgNP) and gold nano-
particles (AuNP). The AuNP and AgNP had spherical
shape and a reported diameter of 3-13 nm and 4- 20 nm
respectively. The authors proposed the use of synthesized
nanoparticles for controlling growth of Klebsiella pneu-
moniae and Pseudomonas aeruginosa as well as potential
urease inhibitor. Keratin materials are also being explored
as a substrate or coating material for in vitro culturing of
cells [8] utilized keratin from goat hair to prepare bio-
material and use it as coating material for in vitro cul-
turing of mesenchymal stem cells (MSC’s) and primary
goat fibroblast cells. The authors reported that the kera-
tin biomaterials hold promising suitability in the area of
cell-based tissue engineering and wound healing owing
to their biocompatibility.
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Conclusion

Keratin from variety of waste sources such as chicken
feather, human hair are being utilized for the fabrica-
tion of biomaterials and have gained immense interest in
various biomedical applications. Interesting physical and
biological properties of keratin makes it a suitable can-
didate for applications such as skin tissue engineering,
treating volumetric muscle loss, drug delivery and bone
tissue regeneration among others. The use of hydrogels,
scaffolds made up of keratin alone or loaded with either
growth factors or drug molecules is an emerging option
to handle and cure chronic wounds. In a similar fashion,
the nanogels, nanoparticles, microfibers based on kera-
tin have also been found to be effective in drug delivery
systems that are biocompatible and show prolonged drug
delivery in addition to growth promoting capabilities for
different human cell lines. For oral tissue regeneration
as well, keratin biomaterials have been found to be non-
toxic for periodontal fibroblasts or dental keratinocytes
as well as have also shown growth promotion for human
periodontal ligament fibroblasts among others. At present
multiple roles of keratin in tissue engineering and haemo-
stasis are being established and more research could be
focused on the detailed role of keratin in these areas.

Future perspectives

Various biomaterials in the form of films, hydrogels,
nanoparticles have been utilized and put to diverse bio-
medical applications. Apart from being a cheap raw
material keratin biomaterial have also been found to be
biocompatible and biodegradable. Still fraction of kera-
tin based biomaterials in commercial market and actual
use in medical field is very less. The major challenges for
keratin biomaterials could be summarized into inconsist-
ent source material, complex extraction and purification
methods, scalability and structural stability under varied
physiological conditions such as pH, moisture and tem-
perature. Detailed studies pertaining to molecular inter-
actions and regarding the mechanical properties of these
materials need to be taken up in order to overcome the
aforesaid challenges.

Research needs to be focused on the behaviour of the
keratin biomaterials with varied concentrations of dif-
ferent keratin components such as keratose, keratein, «
keratin, { keratin and y keratin under diverse physiologi-
cal conditions as well as their cellular interactions and
attachment profiles. Knowledge from these studies would
be a great leap towards success in keratin based bioma-
terials production and application. Further endeavours
could be made to fabricate customised biomaterials for
specific biomedical roles and additional validation of the
usage of keratin-based biomaterials needs to be done in
large animal models.
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Abbreviations

ADSC Adipose-derived stem cells

AgNP Silver nanoparticles

AM Amniotic membrane

ANOVA Analysis of variance

AuNP Gold nanoparticles

BD Bovine dermis

bFGF Basic fibroblast growth factor

BSA Bovine Serum Albumin

Croseus Catharanthus roseus

CHX Chlorhexidine

CS Chitosan

D Dalton

DPSCs Dental pulp-derived stem cells
EDS Glutamic acid-aspartic acid-serine
EGF Epidermal Growth Factor

EMT Epithelial-Mesenchymal Transition
ENS Electrospun nanofibrous scaffolds
FGF Fibroblast growth factor

GIBO Garbage In, Biomaterials Out

GLS Glucosamine sulfate

GOD Glucose oxidase

GS Gentamycin sulphate

GSH Glutathione

HA Hydroxyapatite

HEKa Human epidermal keratinocytes
HGF Human gingiva fibroblasts

HKM Human keratin matrices

HOK Human oral keratinocytes

hPLDFs Human periodontal ligament fibroblasts
HPMC Hydroxypropyl methylcellulose
IL-6 Interleukin-6

KAPNPs Keratin associated proteins nanoparticles
KAPs Keratin associated proteins

kDa Kilo Dalton

KIFs Keratin intermediate filaments

KN Kerateine

KO Keratose

KOH Potassium hydroxide

KRT Keratin

KXG Keratin/xanthan/gelatin

LDV Leucine-aspartic acid-valine
MIP-16 Macrophage Inflammatory Protein-1 delta
MnO2 Manganese dioxide

MRNA Messenger ribosomal nucleic acid
MSC's Mesenchymal stem cells

mTOR Mammalian target of rapamycin
MWCNTs Multi-walled carbon nanotubes
NaOH Sodium hydroxide

NPs Nanoparticles

p-AKT 72 Phosphorylated serine/threonine protein kinase
PAN Polyacrylonitrile

PBS Poly butylene succinate

PCL poly(e-caprolactone)

PEG Poly ethylene glycol

PHB Polyhydroxybutyrate

PK Phosphobetainized keratin

PLCL Poly(L-lactate-caprolactone) copolymer
PLCL Poly(L-lactate-caprolactone) copolymer
PLGA Poly Lactic-co-Glycolic Acid

PNS Peripheral nervous system

PVA Polyvinyl alcohol

RB Rhodomine B

RBCs Red blood cells

ROS Reactive oxygen species

Scl Spinal cord injury

SIS Small intestinal submucosa

THP Thermal hydrolysis process

TPP Tripolyphosphate

VEGF Vascular endothelial growth factor

VML Volumetric muscle loss
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XG xanthan/gelatin
XRD X- ray diffraction
ZnO NPs Zinc oxide nanoparticles

B-CD-K-IN-DG  B-cyclodextrin-keratin- insulin- dialdehyde glucan
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