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Abstract 

Keratin has gained increased curiosity from researchers in the last decade for its potential applications in preparation 
of biomaterials. Most emphasized properties of keratin as a candidate to manufacture biomaterials involves biodegra-
dability, excellent biocompatibility, self – assembling capability, ability to support cell growth and proliferation, water 
absorption and easy availability as waste. Keratin based biomaterials in the form of fibres, scaffolds, films, hydrogels, 
nanoparticles are being explored for various biomedical applications including wound healing, drug delivery, oral 
tissue regeneration, study models as well as nerve regeneration. Methods opted for fabrication of these materials 
include electrospinning, cross-linking and solution casting among others. In order to improve antimicrobial proper-
ties and bioactivity of keratin biomaterials they could also be loaded with drug molecules, antibiotics, growth factors 
and other functional peptides. Keratin materials have the advantage of high loading capacity as well as controlled 
and prolonged release of drug, thus maximizing the availability at the target site. This current paper critically reviews 
the latest developments in the utilization of keratin-based biomaterials in the aforesaid fields.
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Graphical Abstract

Introduction
Due to advancements in technologies involving fabrica-
tion of biomaterials and their expanded utilizations in 
various medical applications, the research community in 
current era is focusing on using the raw materials being 
derived from livestock and agriculture [47, 85]. Such bio-
materials are getting more attention because they tend 
to be sustainable as well as can deal with the problems 
of waste accumulation and efficient utilization. Thus, the 
“Garbage In, Biomaterials Out (GIBO)” concept focuses 
on the recycling of agricultural waste into biocompat-
ible materials (Sah et al., 2022). Raw materials employed 
for such purposes involves, plant and animal proteins as 
well as carbohydrates among others [23, 94, 137]. Keratin 
based materials holds promising potential owing to their 
biological and physiochemical properties as well as avail-
ability as a cheap source in the form of waste [19, 92]. The 
keratin could be obtained from feathers, wool, hair, nails 
and horns and could be fabricated into variety of materi-
als such as films, fibres, scaffolds, sponges and hydrogels 
[103]. Keratin waste including millions of tons of feathers 
accounts for a huge fraction among the waste generated 
worldwide per year [101, 111]. Thus, utilizing keratin 
waste for biomedical applications is of great interest. This 
review summarizes the structure, extraction strategies 

and various biomedical applications of keratin-based bio-
materials. Although the review articles published until 
recently have highlighted the important physical and 
biochemical properties of keratin as well as their possible 
biomedical applications, the current article shall provide 
an exhaustive and updated information on the recent 
research and studies exploring various biomedical appli-
cations of keratin biomaterials including wound healing, 
drug delivery, oral tissue regeneration, nerve regenera-
tion among others.

Structure, sources and properties of keratin
Keratin is an insoluble fibrous protein that makes up the 
cytoskeleton and epidermal structures in humans and 
animals including hair, horns, wool, feathers, claws and 
nails among others [53]. Based on the source, keratin 
presents variation in structure and properties but could 
be broadly classified as hard and soft keratin. The disul-
phide bridges between the cysteine molecules are mainly 
responsible for the stability and integrity of the protein 
structure in keratin. The hard keratins having more sul-
phur (cysteine) content and thus more disulphide link-
ages providing toughness to epidermal structures [33, 
111]. Whereas the soft keratins have less sulphur content 
and is responsible for imparting elasticity to the epithelial 
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tissue [20]. The hard keratins from various sources have 
been mostly employed for the fabrications of biomateri-
als such as films, hydrogels, fibres and sponges [12, 13, 
40, 86]. The polypeptide in keratin could be arranged 
either in α helix or β- fold. The α helical conformation 
results in good elasticity whereas the van der waals forces 
and hydrogen bonds in β- sheets are responsible for 
high tensile strength. The occurrence of α keratin is pre-
dominantly reported in hair, claws and hooves of mam-
mals whereas that of β keratin is seen in feathers, scales 
and beaks of birds and reptiles. Based on their molecu-
lar weight and overall charge, keratins are classified as 
Type I (acidic and smaller) and Type II (basic-neutral 
and larger). Type I and Type II keratins interact with each 
other by forming heterodimers in the initial stage and 
then assembling into complete intermediate filaments 
(Fig. 1).

The inherent key properties of keratin that makes them 
usable in biomedical applications includes ability to self-
assemble, biocompatibility, biodegradability and support 
to cellular proliferation [107, 139]. Reports are also avail-
able that shows the anti-bacterial and haemostatic prop-
erty of keratin [60, 108, 131].

Keratin extraction methods
Multiple methods are available for the extraction of kera-
tin from various sources. These extraction methods rely 
on breaking the disulphide bonds responsible for the sta-
bility of the protein structure. These extraction methods 
could be chemical, physical or biological. Major physical 
methods include high-pressure hydrolysis method, high- 
temperature hydrolysis method, high-pressure puffing 
method and extrusion method. Disadvantages of physi-
cal methods of keratin extraction includes destruction 
of primary structure of the protein as well as high energy 
input. The chemical extraction of keratin on the other 
hand can be done by oxidation methods, reduction meth-
ods or by acid–base treatments (Alahyaribeik et al. 2020). 
For the enzymatic isolation of keratin, keratinases from 
actinomycetes and fungi could be utilized. Reports are 
also available to extract keratin by using microwave irra-
diation, ionic liquids as well as steam explosion. Extrac-
tion methods of keratin from various sources employing 
different methods are summarized in Table 1.

Physical methods
Under physical methods of keratin extraction, high pres-
sure and temperature during hydrolysis has been used. 
Although it is a convenient method but the extracted 
keratin is completely degraded into amino acids and 
peptides thus destroying the primary structure and ren-
dering it unsuitable for biomaterial preparation [84]. 
Another disadvantage of high pressure or temperature 

hydrolysis is excess of power consumption. Alternate 
physical method for keratin extraction is steam explo-
sion in which high pressure steam is enforced into a con-
tainer with the raw materials. Steam explosion has been 
studied on wool degradation and it has been observed 
that almost 62% of wool degradation could be achieved 
by stem at higher temperatures of about 600  °C [114]. 
Higher rates of keratin decomposition could be achieved 
with increasing processing time, temperature and pres-
sure [41].

Chemical methods
Acid–alkali treatment
Employing strong acids such as hydrochloric acid and 
sulphuric acid for the hydrolysis of keratin involves the 
treatment of keratinous waste for a given period of time, 
neutralization and further drying and purification to 
achieve final dried product [7, 12, 13]. The time employed 
for hydrolysis dominates the molecular weight compo-
sition of the extracted keratin, an increase in hydrolysis 
time results in lower molecular weight protein chains 
[87]. As a result of prolonged acid hydrolysis, certain 
amino acids such as tryptophan are degraded, moreover 
the leftover acid waste with is cumbersome to handle and 
dispose.

As far as use of alkali for the hydrolysis of keratin is 
concerned, the loss of amino acid is not observed [12, 13]. 
Treatment with alkali weakens the mechanical properties 
of keratin and thus renders it unsuitable for film forma-
tion [21]. Alkali such as Ca(OH)2, KOH, NaOH have been 
studied for the hydrolysis of wool keratin. Combination 
of Acid and alkali for the hydrolysis of keratin have also 
been explored and found to be more effective [21, 30].

Oxidation
Oxidizing agents such as peracetic acid, performic acid, 
hydrogen peroxide, peroxyacetic acid, peroxyformic acid 
have found their use in keratin extraction. These com-
pounds break the disulphide bonds to yield keratoses 
which predominantly have a crosslinked structure stabi-
lized by noncovalent interactions and depict hygroscopic 
behaviour [132]. The keratoses are further subdivided 
into α- keratoses, β-keratoses and γ-keratoses based on 
their solubility in ammonia and their region of origin 
from the keratin tissue. α- keratoses could be which are 
derived from cortex region are soluble in ammonia and 
could be precipitated at acidic pH. β-keratoses, derived 
from cuticular region are insoluble in ammonia whereas 
γ-keratoses are soluble in ammonia but are not pre-
cipitated at acidic pH [132]. Disadvantages of oxidation 
method include loss of certain amino acids such as phe-
nylalanine, tyrosine, tryptophan among others as well as 
long treatment times [86].
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Reduction
This is the most commonly used method of keratin 
extraction. Reducing agents used for breaking the disul-
phide linkages are β-mercaptoethanol and other thiols 
in combination with denaturing agents like urea and 
thiourea [54, 95]. Upon reduction in alkaline medium 
soluble protein known as kerateines are formed. Cer-
tain protocols also employ the use of sodium dodecyl 

sulphate and other surfactants along with reducing 
agents to increase the stability of the keratins in solution. 
This use of β-mercaptoethanol poses threat as it is toxic 
in nature thus sodium disulfite could be used as an alter-
nate although it gives lesser yields. Urea in high concen-
trations disrupts the protein framework in keratin by 
hindering with the hydrophobic interactions and thus 
enhancing the action of reducing agents. The reducing 

Fig. 1 Human hair keratins and their interactions. a Structure of KRT 85 derived from AlphaFold protein structure database. b Binary interaction 
of KRT85 with KRT38 drawn with IntAct database. c Binary interaction chart of KRT85 with 25 other proteins involving type 1 hair keratins and other 
proteins, retrieved from UniProt (ID P78386). d Network showing multiple interactions between different keratins and keratin associated proteins 
from homo sapiens involved in the formation of hair retrieved from STRING database
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Table 1 Recent advances in extraction methods of keratin from various sources

Method Source Protein yield (%) Properties of protein extract Reference

Chemical methods
 Acid-Alkali Treatment Wool - An average diameter of extracted 

keratin protein found was 25nm 
and length of less than 3 μm. 
These nanofibers constitute mainly 
α-helical proteins. Extracted keratin 
nanofibers have a uniform circular 
cross-section like morphology.

[19, 124]

Chicken feathers 53.78% White chicken feather keratin 
hydrolysate had pH 11.0, was solu-
ble in nature with 1.0837 g/ml 
density while black chicken feather 
hydrolysate had pH 12.0, 1,0911 g/
ml density and limited solubility. 
The isolated keratin possessed 
primary and secondary amine.

[97]

 Oxidation Tannery Sheep Hair 91.50% Extracted keratin has molecu-
lar weight ranging from 3-15 
kDa with amorphous structure 
and XRD peaks at 2Ɵ values 9.36° 
and 21.16° due to the presence 
of α-helix and β- sheet structures.

[76]

 Reduction Human hair 73% Dialyzed protein consists mostly 
of alpha structural keratins.

[118]

Chicken feathers 66.45% Keratin proteins possessed semi-
crystalline nature with rough 
surface morphology.

[4]

 Ionic Liquid Treatment Sheep wool - The regenerated keratins con-
sisted of low sulphur keratins 
and fractions of matrix proteins, 
with improved thermal properties 
compared to raw wool.

[35]

Wool, hair and chicken feather 1-Butyl-3-methylimidazolium 
chloride was used in one step 
process to composites of cellulose 
and keratin. Dtrongest bactericidal 
effects were recorded in feather 
composites.

[120]

Biological methods 
 Enzymatic hydrolysis method Chicken feather 76.20% Protease enzyme was used in com-

bination with alkali treatment. 
Maximum yield was obtained 
with 5%NaOH, 5% KOH and 2% 
protease concentration.

[3]

Chicken feather - Feather meal produced by crude 
keratinase enzyme of Bacil-
lus pumilus AR57 was rereported 
to be rich in essential amino acids. 
The isolated keratinase was found 
to be stable for 3 hours.

[49]

Chicken feather - Keratinase from Streptomyces 
netropsis A-ICA and Bacillus 
subtilis ALICA showed optimum 
feather degrading abilities at pH 
values 7 and 7.5 at 25 and 30° C 
respectively.

[1]
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methods have been predominantly for keratin extrac-
tion with varied concentrations of urea and other com-
ponents from sources such as feathers, hair, horns and 
hooves [54, 80].

Ionic liquid treatment
Ionic liquid are salts or cationic/ anionic compounds 
that exists as liquid at room temperature and possess 
strong solubilizing properties as they could disrupt the 
intermolecular hydrogen bonds present in the natural 
polymers [12, 13, 43]. These liquids have been studied 
for use in the extraction of keratin from chicken feather 
and wool. In comparison to acids and alkali, ionic liq-
uids are eco-friendly, non- corrosive and non- flam-
mable. Ionic liquids are often used in combination with 
chemicals such as sodium bisulfite that could break 
the disulphide linkages and also reduces the duration 
of the treatment. Ionic liquids such as BMIM + Cl- and 
1-allyl-3-methylimidazolium chloride could be used 
to extract keratin at high temperatures of up to 130  °C 
[25] 19% yield of keratin from human hair have been 

reported with 1-allyl-3-methylimidazolium chloride 
[133, 135], and reduced solubility have been reported in 
BMIM + Cl- [112].

Biological/ enzymatic methods
Biological extraction or solubilization of keratin have 
been reported by the use of micro-organisms as well as 
purified enzymes. In comparison to chemical method 
of keratin extraction, biological methods are safer and 
results in lesser loss of amino acids along with being 
energy efficient method, as input of energy in the form of 
higher temperatures or pressure is not desired. But use of 
microorganisms and purified enzyme preparations make 
these methods costlier [52]. Bacillus isolated from poultry 
waste and soil, Amycolatopsis Chryseobacterium, Strep-
tomyces, Staphylococcus, etc., are known to be keratin 
degrading [2, 5, 115, 116]. In addition to bacteria certain 
fungal species (Aspergillus flavus, Aphanoascus fulves-
ence, Microsporum gypseum) have also been studied for 
this purpose [7, 75]. Use of urea with microorganism have 
also been reported to achieve higher keratin yields.

Table 1 (continued)

Method Source Protein yield (%) Properties of protein extract Reference

 Microbial treatment Chicken feather 42.8 Keratin hydrolysates were clear 
and composed of peptides 
with molecular mass ranging 
from 800 to1079 D, suitable 
for application in cosmetics.

[130]

Chicken feather - Streptomyces griseoauran-
tiacus AD2 depicted highest 
keratinolytic activity followed 
by Streptomyces albidoflavus AN1 
and Streptomyces drozdowiczii AD1.

[74]

Physical methods 
 Microwave irradiation Wool - Extracted keratin retained the pep-

tide chain structure. Obtained 
wool keratin showed small particle 
size with low crystallinity (12.3%). 
This method disturbed the stabil-
ity of the α-helix and the β-sheet 
structures resulting in random coil 
structures.

[28]

 Steam explosion Porcine hoof shell - Main components of the liquid 
protein fraction were short pep-
tides (< 2 kDa, 84.72%) and amino 
acids (1.68 mg/mL), suitable 
as peptone substitute for fermen-
tation culture.

[113]

 Thermal hydrolysis or super-
heated water extraction

Hog hair 70% The amount of cystein reduced 
in the protein hydrolysate 
as the disulphide bond breaks 
at high temperature and sulphur 
is released as hydrogen sulfite. The 
original tertiary structure in alpha 
keratins and matrix proteins were 
reported to be lost after Thermal 
hydrolysis process (THP)

[121]
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Keratinases enzymes from Apergillus, Lysobacter, 
Bacillus, and Streptomyces genera could be used for 
keratin extraction [116]. Different molecular weight kera-
tin fractions could be prepared depending upon the pH, 
temperature and exposure time [22].

Biomedical applications of keratin biomaterials
Wound healing
Wounds can arise from several factors such as severe 
injuries, major surgeries, diabetes, or vascular illnesses. 
Wound healing involves different types of cells such as 
fibroblasts cells, keratinocytes, various immune cells and 
vascular endothelial cells. Certain wounds do not heal 
in short time with normal clinical care and may bother 
the patients for months or even years. The accelerated 
healing in such challenging wounds could be achieved 
by application of biomaterials based on protein matri-
ces. Collagen and keratin are the major components of 
the human skin that have gained interest in recent time 
to prepare biomaterials capable of accelerating heal-
ing in such chronic wounds. These biomaterials gener-
ally deliver materials such as growth factors, proteins or 
other molecules that could expediate the wound healing 
process. Keratin is present as filament in keratinocytes 
cells of the epidermal layer of the skin. Apart from pro-
viding mechanical strength, it also plays significant role 
in cell signalling. Keratins undergo post translational 
modifications and interact with various signalling pro-
teins in order to perform the functions including cell 
migrations, adhesion and differentiation [104]. According 
to reports, keratin also plays a vital role in activation of 
keratinocytes that is an important step in normal wound 
healing process. Various types of keratin-based bioma-
terials employed for wound healing involves nanofib-
ers, membranes, hydrogels, scaffolds and dressings. The 
keratin alone or in combination with polyurethane, PVA 
and cellulose have recently been reported to form these 
biomaterials. In a recent study, Ramey et  al. [93] pre-
pared human hair keratin matrices and explored their 
usage in wound healing in diabetic mice. Comparison 
of these keratin matrices was also made with amniotic 
membrane, bovine dermis and porcine decellularized 
small intestinal submucosa for wound healing purposes 
(Fig.  2). The authors reported these matrices to be thin 
with smooth and uniform surface morphology. Human 
epidermal (HEKa) keratinocytes when grown on keratin 
matrices showed upregulation of Interleukin 6 (IL-6) and 
Macrophage Inflammatory Protein-1 delta (MIP-1δ), that 
plays an important role in wound healing by modulating 
inflammatory response and promoting fibroblast migra-
tion. In  vivo studies suggested that the wound size was 
smaller in mice that were treated with keratin matrices 
then those treated with amniotic membrane after 3, 4 

and 5  weeks. Keratin based applications of biomaterial 
formation and utilization for wound healing has been 
summarized in Table 2.

Drug delivery
The term ‘Drug delivery’ defines the administration of 
any pharmaceutical compound to achieve therapeu-
tic effect in humans or animals [38]. There are various 
techniques adopted by scientists to deliver these com-
pounds effectively and safely to the target site in the body 
of human in correct concentration [29]. The aim of the 
drug delivery system is to enhance the efficacy, safety and 
bioavailability with minimized side effects to target tis-
sue. This area covered many aspects including route of 
administration, targeted delivery, formulation technolo-
gies and biological barriers. The biocompatible nature of 
keratin has attracted researchers to exploit it in the appli-
cations involving designing of drug delivery systems [31].

Hydrogels and nanogels derived from proteins are lipo-
philic in nature but they do not dissolve in water instead 
they swell up after coming in contact with water. They 
have excessive drug loading capacity and are able to ame-
liorate cellular uptake efficiency [127]. Keratin biomateri-
als are loaded with drugs and used as a carrier because 
they act as a covering shield and protects encapsulated 
drugs from degradation in the physiological environ-
ment, before reaching the target site. Keratins also have 
the ability to bind effectively with various bioactive com-
pounds, maximizing drug stability and providing con-
trolled release [126, 149].

Keratin naturally possess cysteine-containing residues 
and ample of thiol groups, these sulfhydryl groups of 
keratins form a disulfide bond with a desired drug and use 
it as a carrier for selectively drug release under reducing 
circumstances. Additionally, it also possesses a lysine and 
arginine group that can be elicited by a known protease 
trypsin which is an essential enzyme generally augmented 
in tumor tissues [149]. Different biomaterials have been 
formed including nanogels (with hyaluronic acid and 
sodium alginate), hydrogels, nanofibers, microparticles, 
nano fibrous mats, nanotubes and nanoparticles like kera-
tin/CHX NPs (keratin/chlorhexidine complex), by using 
various methods such as nanoprecipitation, self-assembly, 
de-solvation, iconic gelation and aggregation. Liu (2024) 
used keratin as an envelope of antitumor drug and used as 
a drug delivery agent in tumor chemotherapy.

Recent innovations in this area focus on smart drug 
delivery systems, biologics (i.e. monoclonal antibodies) 
and nanotechnology. Currently, these advancements are 
very crucial to treat any disease more effectively with 
minimizing side effects and improving patients’ health. 
Recent advancements on the role of keratin in the drug 
delivery systems are summarized in Table 3.
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Oral tissue regeneration
Keratin have found a place in various ways pertaining 
to the production and utilization of biomaterials appli-
cable in oral tissue or bone regeneration. A post opera-
tive infection in dentine region, damage to alveolar 
bone, wound healing and degeneration in pulp dentine 

are some of the scenarios exploiting remarkable biologi-
cal properties of keratin to form bio composite materi-
als. Wound repair in oral cavities takes 2–10 days to heal 
and it requires processes such as epithelial cell migration, 
proliferation and cell plasticity. Trans-differentiation of 
epithelial cell resulting from persistent inflammation is 

Fig. 2 Effect of various biomaterial wound care products on healing in vivo. A (left) Schematic showing four 6 mm diameter full thickness wounds 
on the backs of db/db mice that were treated with HKM, another biomaterial-based wound care product, or no treatment (control) in randomised 
locations. Image created with Biorender.com. Representative images of the four wounds at week 0 before application of treatment (middle-left), 
wounds treated and topped with secondary dressings (middle-right), and wounds after several weekly treatments (right), in this case HKM (i), 
control (ii), and bovine dermis (iii) at week 3 post-operation. B Bar graph showing average time to complete closure for each treatment applied. 
*p < 0.05, ****p < 0.0001 by one-way ANOVA with Tukey’s multiple comparisons. C Healing trajectories of wounds on mice treated with control 
(black circle, n = 12), amniotic membrane (blue square, n = 12), or HKM (gold triangle, n = 12). D Healing trajectories of wounds on mice treated 
with control (black circle, n = 12), bovine dermal collagen (blue square, n = 12), or HKM (gold triangle, n = 12). E Healing trajectories of wounds 
on mice treated with control (black circle, n = 16), porcine small intestinal submucosa (blue square, n = 16), or HKM (gold triangle, n = 16). 
Symbols indicate statistical significance of HKM compared to other treatments: *p < 0.05 vs. control, **p < 0.01 vs. control, ****p < 0.0001 vs. 
control, #p < 0.05 vs. corresponding comparative advanced wound care product, ##p < 0.01 vs. corresponding comparative advanced wound care 
product, ####p < 0.0001 vs. corresponding comparative advanced wound care product by two-way analysis of variance (ANOVA), paired by mouse, 
with Tukey’s multiple comparisons at each timepoint [93]. Creative Commons Attribution License
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Table 3 Application of keratin based biomaterials in drug delivery systems

Composition Keratin source Biomaterial type Properties and function References

Tragacanth gum and keratin Chicken feather Nanogel Nanogels with cinnamon as herbal extract 
and enclosed by cotton fabrics depicted 
antibacterial activity against both gram 
+ve and gram -ve bacteria. Nanogels were 
reported to be biocompatible. Release of cin-
namon extract is reported to be concen-
tration dependent and follows first order 
kinetics.

[73]

Chitosan and keratin Chicken feather Hydrogels Hydrogels with keratin chitosan ratio 
of 3/2 displayed most efficient controlled 
release of two drugs viz. Rhodamine B 
(RB) and Bovine Serum Albumin (BSA). At 
27 °C and 7.4 pH, a maximum cumulative 
release of 81.7% and 31.2% for RB and BSA 
respectively was recorded. Approximately, 
the attainment of equilibrium was achieved 
after 8 hours for RB and 44 hours for BSA. 

[143]

Poly butylene succinate (PBS) and keratin Wool, hair and nails Nanofibers Electrospun nanofiber mats formed with PBS 
and keratin by using hexafluoro isopropanol 
as blending solvent showed increased 
release rate of Rhodamine B with increase 
in concentration of keratin. The blend 
solutions of Keratin/PBS displayed non-
Newtonian behaviour, with 70/30 and 30/70 
ones possessing thinner mean diameter 
in nanofibers owing to better orienta-
tion of polymer chains under shear stress. 
Electrospun mats with higher PBS content 
had improved thermal and mechanical 
properties.

[44]

Lipids and keratin microparticles Porcupine quills Microparticles Produced microparticles showed 29.83% 
antioxidant activity. Lipid coating of keratin 
microparticles increased antibacterial activity 
for about 55% against E. coli and Staphylo-
coccus aureus. Lipid-loaded erythromycin 
further improved the antibacterial properties 
once carried on surface of keratin micropar-
ticles.

[68]

Keratin and polybutylene succinate (PBS) Wool Nanofibrous mats Ker-PBS 50-50 electrospun nanofibrous mats 
loaded with 23 wt.% of diclofenac released 
165.2±38.3 and 307.8±24.4 μg/cm2 after 6 
and 8h respectively.

[45]

KAPs (keratin-associated proteins) and KIFs 
(keratin intermediate filaments) 

Human hair Keratin nanoparticles The current study revealed that KAPs/KIFs 
ratios directly act upon properties and struc-
tures of keratin nanoparticles. the authors 
observed that higher concentration of KAPs 
offers higher repulsive force between parti-
cles and minimizing their aggregation poten-
tial. Reversely, increase amount of KIFs offers 
weak repulsive force and smaller particle size 
and able to maximize theophylline release.

[63]

Keratin/chitosan/glucosamine sulfate (KRT/
CS/GLS)

 Multi-walled carbon 
nanotubes (MWC-
NTs)

Produced composites have amorphous 
nature with high thermal decomposition 
temperature of 420 °C. MTT assay revealed 
maximum concentration of MWCNT-GLS/
CS/KRT nanocomposites showed 83% cell 
viability in RAW 264.7 cells.

[117]
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called type 2 EMT (Epithelial-Mesenchymal Transition). 
Vimentin is the biomarker for Type 2 EMT, which indi-
cated that keratin induces EMT in the oral keratinocytes 
and enhances migration of cells. Thus, human hair kera-
tin could serve as an excellent material to form bioma-
terials with varied properties and functions. Moreover, 
the alveolar bone that provides support to the tooth may 
undergo loss and degeneration as a result of various fac-
tors. In order to replace the lost tooth, dental implants 
need proper dimensions of this alveolar bone with 
required surface area for implantation. With damaged 
alveolar edge, the success of implants could be reduced. 
Keratin biomaterials among others have been reported 
to promote regeneration of alveolar bone. Another area 
involves utilization of stem cells including Dental pulp-
derived stem cells (DPSCs) to generate pulp-dentine like 
tissue. Collagen and keratin have been used in form of 
scaffolds to induce differentiation in DPSCs through cell 
homing and providing binding sites [110]. Keratin com-
posite membranes could also be employed to release 
antibacterial agents at a control rate in order to prevent 
postoperative infections. Latest researches exploring 
the potential use of keratin biomaterial for various den-
tal applications are summarized in Table 4. In a notable 
study by Feroz & Dias [34], Scaffolds were prepared from 
sheep wool keratin, hydroxyapatite and hydroxypropyl 

methylcellulose which depicted cytocompatibility with 
osteoblast cells and could be employed for alveolar bone 
regeneration (Figs. 3 and 4).

Tissue engineering
Tissue engineering comes to safeguard in  situations 
where conventional medicine systems render to be 
incompetent, such as failure of function or loss of a 
particular tissue or organ. Success of tissue engineer-
ing relies on the fabrications of scaffolds or other forms 
of biomaterials that could effectively replace the original 
tissue/ organ. Various biomaterials being explored for in 
this regard involves nanoparticles, nanofibers, films and 
hydrogels [37, 69–71, 100]. Hydrogels are most com-
monly being employed for tissue engineering because 
they could most effectively bio-mimic as well as can be 
designed into variety of different structures according 
to specific needs [6]. Owing to their three-dimensional 
cross-linked network and hydrophilic characteristics, 
hydrogels have the ability to absorb and retain large 
amounts of biological fluids [72]. Disulfide bonds in 
the keratin structure provide it with high mechanical 
strength, moreover it its non- immunogenicity makes it a 
suitable candidate for tissue engineering. The amino acid 
sequences of keratins are known to interact with integ-
rins such as glutamic acid-aspartic acid-serine (EDS), and 

Table 3 (continued)

Composition Keratin source Biomaterial type Properties and function References

Alginate, chitosan, and tripolyphosphate 
(TPP)

Chicken feathers Microparticles Encapsulation efficiency of 69.24% 
was recorded for amoxicillin in keratin 
and TPP microparticles with a gradual release 
of up to 96% in 6 hours’ time. In comparison 
to pure amoxicillin the drug loaded micro-
particles depicted increased antibacterial 
activity against both E. coli and S. aureus 
because of controlled and prolonged drug 
release.

[147]

β-cyclodextrin (β-CD), keratin (K), Insulin (IN) 
and dialdehyde glucan (DG)

Human hair Nanoparticles Keratin based (β-CD-K-IN-DG) NPs had high 
drug loading capacity (32.81%), high encap-
sulation efficiency of 98.52% and has the 
ability to protect insulin from enzymatic 
and acid degradation. NPs assisted in pro-
longing the residence time and controlled 
release of insulin leading to a maximum oral 
bioavailability of 12.27% and high hypogly-
caemic effect in type 1 diabetic rats.

[134]

Xanthan/gelatin (XG) and keratin/xanthan/
gelatin (KXG)

 Hydrogels Hydrogels produced by crosslinking of xan-
than, gelatin with glycerol in different ratios 
and loaded with vitamin C. Addition of kera-
tin with xanthan, gelatin, glycerol (1:1:2) gave 
water vapour transmission at the rate 4523 
± 133 g m−2 d−1, improved L929 fibroblast 
viability and maximized protein release. Vita-
min C increased collagen synthesis in L929 
fibroblasts and was released for 100 hours 
showing inhibition of bacterial growth.

[24]
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Table 4 Advances in the use of keratin biomaterial for oral tissue regeneration

Composition Keratin source Biomaterial type Properties and function References

PEG-g-keratin Human Hair Powder Keratin has the potential to enhance 
monolayer wound healing using HOKs 
(human oral keratinocytes). PEGylated 
keratin treatment has demonstrated 
no toxicity to periodontal fibroblasts 
or dental keratinocytes.

[56]

PLGA and keratin Wool Ornidazole loaded membrane These membranes inhibited growth 
of Porphyromonas gingivalis, Fuso-
bacterium nucleatum and Peptostrep-
tococcus anaerobius. Also promoted 
growth of human periodontal ligament 
fibroblasts.

[150]

Mineralized keratin Nano keratin Nanoparticles Cultivation of DPSCs with mineralized 
keratin resulted in more extracellular 
matrix proteins interaction with cul-
ture interface. The number of cells 
also increased.

[15]

keratin/hydroxyapatite (HA)/
hydroxypropyl methylcellulose 
(HPMC)

Sheep wool Scaffold The scaffold has highly porous intercon-
nected structure with average pore size 
of 108.36nm. These scaffolds also pos-
sessed cytocompatibility with osteo-
blast cells, having ability to regenerate 
alveolar bone. (Fig. 3, 4)

[34]

Keratin and Fibrinogen Human Hair Injectable Hydrogels Depict cytocompatibility with human 
gingiva fibroblasts (HGF) cells. Free 
flow of biological fluids, cell migra-
tion and growth were also absorbed 
inside these hydrogels.

[51]

keratin/hydroxyapatite Wool Keratin/hydroxyapatite (keratin/HA) 
scaffold

Osteocalcin or Bone Gla Protein 
was detected in the Saos-2 cells cultured 
on these scaffolds, moreover these 
cells could be seen adhering, migrating 
and proliferating in the scaffolds.

[36]

Keratin and Titanium Wool Keratin coated titanium surface Solution casting gave a thick covering 
of titanium while molecular graft-
ing resulted in discontinuous coating 
of titanium.

[96]

Fig. 3 General Appearance of Keratin/HA/HMPMC scaffolds (diameter: 15 mm, height: 5 mm) (A & B), SEM micrographs of Pure keratin scaffolds (C) 
and Keratin/HA/MPMC scaffolds (D). (Size bars in Fig. 4 C & D represents 100 μm). Feroz & Dias [34]; Creative Commons CC-BY-NC-ND
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leucine-aspartic acid-valine (LDV) and others [129]. One 
more advantage of using keratin for generation of tissue 
engineering biomaterial is that the animal cells mostly do 
not contain the keratinase enzymes so the in vivo break-
down of this protein like other does not occurs. The gen-
eration of keratin-based hydrogels generally requires a 
cross-linking agent such as transglutaminase, dialdehyde, 
formaldehyde, glutaraldehyde, ethylene glycol diglycidyl 
ether [10, 27, 82, 123, 142].

Application of keratin biomaterial is being studied for 
the regeneration of skin tissue regeneration, vascular tis-
sue regeneration and skeletal muscles regeneration spe-
cifically volumetric muscle loss (VML). Minor injuries 
as a result of exercise or strain in skeleton muscle could 
be repaired by the intrinsic mechanism of self – repair 
involving multiple cell signalling events, but major mus-
cle loss following a trauma or surgical intervention 
results in disturbances in signalling cascade leading 
to long term loss of structure and function [89]. Use of 
allografts, muscle flaps are adopted for volumetric mus-
cle loss treatment but has their own drawbacks. Keratin 
based scaffolds and other biomaterials constructs are 
being designed and studied for the purpose of restoring 
functional loss in VML as well as other tissue engineering 
applications (Table 5).

Peripheral nerve regeneration
Peripheral nervous system (PNS) helps the body to feel 
sensations and move the muscles. PNS works as a bridge 
between central nervous system and various tissues or 
organs [138]. The fundamental units of nervous system 

i.e. neurons are made up of bundles of axons which forms 
the peripheral nerves. The types of injuries that can 
affect the PNS includes neuropraxia, axonotmesis, or 
neurotmesis. Although the PNS has the capacity to self-
repair, but in cases of delayed treatment, severe injury 
or an injury larger then 3 cm leads to incomplete repair 
and loss in functionality [64]. In order to regenerate the 
damaged peripheral nerve, various nerve tissue grafts are 
being studied including autografts, allografts and xeno-
grafts, among which autografts are considered to be the 
most efficient. Nevertheless, there are certain limitations 
to nerve grafts including limited availability, surgical 
complications, immune rejection and diameter mismatch 
between the donor and recipient nerve to name a few 
[136]. More recent alternative to nerve grafts includes the 
artificial nerve conduits made up of biological polymers. 
Nerve conduits help to fill the nerve gap resulting from 
nerve injury by guiding the axon regeneration and thus 
improving the efficiency of the clinical treatment. Differ-
ent nerve conduits with added functionality of drug and 
growth factor delivery, capacity to support cell prolifer-
ation as well as conductivity with design specific to the 
particular function are being developed [62, 140, 141]. 
Similarly other types of biomaterials including mem-
branes have found potential use in regeneration of PNS 
injuries.

The chitosan/keratin biomimetic composite membrane 
prepared by [11] depicted potential for angiogenesis and 
nerve repair efficiency [55]. Fabricated tubular nanofib-
ers with keratin extracted from chicken feather and PVA 
by using electrospinning, to be used as nerve conduits. 

Fig. 4 Fluorescence images of keratin (A, B, C) and keratin/HA/HPMC scaffolds (D, E, F) seeded with Saos-2 cells after live/dead viability assay. 
Images shows Saos-2 cell viability at 24 h, 48 h & 72 h. Bar = 100 μm. [34], Creative Commons CC-BY-NC-ND
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These nanofibers had diameter ranging from 170 to 
234 nm. The authors also reported a decrease in diameter 
of the nanofiber with increase in concentration of keratin 
[39] reported that the human hair keratin can promote 
the extension of axon in Dorsal root ganglion neurons 
in vivo. The authors prepared a keratin sponge and also 
suggested that these could enhance the cell adhesion, 
proliferation, migration and secretion of neurotrophic 
factors by Schwann cells in vitro [144] studied spinal cord 
injury (SCI) in rat models and reported that keratin bio-
materials can induce polarization of macrophages and 
promote functional recovery.

Promoting macrophages to move towards M2 anti-
inflammatory phenotype is regarded as a target to treat 
the SCI [152] studied the anti-inflammatory activities 
of 17 human hair keratins, the authors have found that 
recombinant keratins 33A and 35 demonstrated supe-
rior anti- inflammatory properties. The authors also 
established the role of recombinant keratin 33A in nerve 
regeneration and increasing M2 polarization by working 
with rat T9 spinal cord lateral hemisection model and 
utilizing keratin nanofibers.

Qin et  al. [90] used activated Schwann cells with 
human hair keratin to prepare nerve grafts. The nerve 
grafts thus produced, promoted the nerve conduction 
function as well as motor function in rats with sciatic 
nerve injury due to increased expression of nerve growth 
factors, thus could be applicable in healing peripheral 
nerve injuries. In yet another more recent research [119], 
Explored the potential of curcumin to promote periph-
eral nerve regeneration. The researchers exploited the 
properties of keratin/ chitosan hydrogel to effectively 
deliver the curcumin to the target site in appropriate con-
centration. The hydrogels were found to be capable of 
delivering the curcumin for 10 days in vitro. In rat studies 
also, the hydrogel was found to be capable of enhancing 
nerve regeneration (Fig. 5).

Ocular surface reconstruction
Ocular surface reconstruction means repairing the 
eye’s tissue such as cornea, conjunctiva and limbus and 
restoring the vision of eyes. Ocular surface reconstruc-
tion often become necessary in case of damage caused 
by various factors including trauma, infections, chemical 

Fig. 5 Schematic diagram of keratin chitosan hydrogel synthesis process loaded with curcumin, cell adhesion in complex hydrogel, complex 
hydrogel promotes repair of peripheral nerve injury. Sun et al., (2023); Creative Commons CC-BY
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burns, surgical complications and autoimmune diseases. 
The ultimate objective of this technique is reconstruct-
ing vision, alleviating pain and prevention from further 
damage. As already stated, keratin is known for its bio-
compatibility, biodegradability and ability to promote cell 
proliferation, cell division and cell adhesion it has now 
gained attention of researchers in the application of ocu-
lar surface reconstruction. This can be achieved by cre-
ating scaffolds, membranes and fibrous mats to repair 
and regenerate ocular surface tissue. Keratin-based bio-
materials provide a supportive structure to promote cell 
proliferation and cell migration of corneal and conjunc-
tival epithelial cells. These materials have mechanical 
properties which are similar to the native ocular sur-
face and facilitate in healing and integration. Owing to 
its anti-inflammatory effect, keratin can provide a more 
conducive environment for tissue healing and reduce 
inflammation in the ocular surface. The research on the 
exploitation of keratin for ocular surface reconstruction 
is still evolving with ongoing studies exploring its full 
potential and optimizing the application processes. How-
ever, current results are promising and indicate that kera-
tin and keratin-based biomaterials could become an ideal 
tool for ocular surface reconstruction. Generally amni-
otic membrane is applied as an alternative substitute 
during ocular surface reconstruction. Additionally, dexa-
methasone eye-drop is continuously required to supress 
inflammation and fast recovery rate after surgery.

Schwab & Reichl [105] successfully developed keratin 
films incorporated with dexamethasone drug. They used 
different concentrations of dexamethasone, and their find-
ings suggest that prepared films with moderate dexameth-
asone gives satisfactory positive results as they influenced 
the biochemical properties and transparency of the films 
whereas highly loaded films showed exact similar result to 
those of amniotic membranes. The authors also compared 
these films with amniotic membranes and found that 
developed films could be a promising alternative to be 
used in ocular surface reconstruction [9]. Also compared 
keratin films with amniotic membranes by using ofloxa-
cin and dexamethasone eye-drop externally on the regu-
lar intervals instead of incorporating in the membrane. 
The experiments involved use of amniotic membranes 
and keratin films separately in white rabbits and recorded 
the results after a period of 10  days. The eyes of rabbits 
treated with keratin films were reported to be completely 
healed without any neovascularization and those treated 
with amniotic membranes showed neovascularization on 
seventh day however, it recovered on tenth day.

Haemostatic agent
In case of any injury or cut, the loss of blood from the 
body is stopped by the formation of blood clot. The 

sequence of regulated events leading to the formation 
of blood clot is known as hemostasis and the agents that 
participate in hemostasis are called hemostatic agents. 
In case of a major bleeding or accidental situations, 
hemostasis may not be efficient enough and that could 
even lead to the death of the patient. Advance and new 
hemostatic technologies are continuously being devel-
oped to tackle uncontrolled hemorrhage in an emer-
gency, battlefield and surgical conditions. Hemostasis 
involves activation of signaling pathways to clot the 
blood, including platelets and other proteins like fibrino-
gen and thrombin.

Although, many hemostatic agents, adhesives, and 
sealants are available in the market. But developing an 
ideal hemostatic agent with multiple properties such as 
effective and immediate management of bleeding, bio-
degradability, biocompatibility, appropriate mechanical 
properties, strong adhesion property, antibacterial activ-
ity, easily manageable in wet and dynamic conditions and 
many more still remains a huge leap. Keeping these con-
ditions in mind, researchers have used keratin as a hemo-
static agent because it is a versatile compound that has 
all these characteristics. Keratin activates platelets and 
other important proteins directly as it promotes plate-
let adhesion and aggregation. It can be used to produce 
physical scaffolds that supports the formation of blood 
clot. Scaffolds trap blood platelets and RBCs which con-
tribute to the formation of a stable clot and can efficiently 
seal the injury and stop bleeding. Keratin can be isolated 
from different source material and processed into various 
forms such as sponges, powders and films which can be 
applied to wounds and on an injury directly. These mate-
rials enhance hemostasis as they can absorb blood imme-
diately, aggregate clotting factors and provide a suitable 
environment for clot formation.

Goudarzi et  al. [42] successfully developed keratin 
crosslinked sponges with the help of glutaraldehyde 
by utilizing freeze-drying technique. They performed 
experiments on human foreskin fibroblasts cells and 
suggested that developed sponges were able to absorb 
91% of water and had good cell viability resulting into 
blood clotting and major liquid absorption. The authors 
also observed that prepared sponges were capable to be 
used in haemostasis [32]. Used freeze-gelation method 
to prepare composite scaffolds of methylene blue-loaded 
keratin and alginate. Developed composite scaffolds 
could absorb over 1600% liquid effectively, had good bio-
degradability, high biocompatibility and well intercon-
nected pores. The researchers concluded that composite 
scaffolds of keratin and alginate work synergistically on 
wound and significantly minimizes haemostasis time. 
They also reported that the drug loaded into devel-
oped scaffolds prevent infection by absorbing wound 
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secretions and increase burst release at the early stages 
of wound recovery.

Chen et al. [14] worked on keratin polymers (high and 
low molecular weight keratins) i. e. KIFs and KAPs. They 
used a combination of both proteins in different ratios to 
precipitate fibrinogen and reported that equal amount of 
KIFs and KAPs participate in haemostasis as it yielded 
highest accumulation of fibrinogen protein [136]. Uti-
lized a novel approach viz. recombinant synthesis for 
maximizing the performance of keratin in haemostasis. 
They adopted those α- helical keratin sequences which 
are responsible for haemostatic activities and noticed 
that amino acids found on N-terminal of α- helices (such 
as Tyr, Phe and Gln) residues are very important in fibrin 
polymerization. The researchers also mutated the Cys-
tine to Serine residues on α-helices and found a positive 
results in haemostasis. High efficiency keratin biomateri-
als could be produced by exploring such strategies with 
improved potential over gelatin sponges. In another 
study from [140, 141] also reported that keratin/chitosan 
sponges with porosity 90.12 ± 2.17% have potential to 
work as haemostatic agent [66]. Successfully developed 
KAPs nanoparticles from KAPs fragments extracted 
from human hairs and used these KAPNPs as haemo-
static agent. Their researchers reported that KAPNPs 
have great potential, good biocompatibility and mini-
mum clotting time.

Miscellaneous
Valkov et  al. [128] prepared keratin films from human 
hair with structural similarity to human nail plate. The 
authors reported that the keratin films could be used as 
a model for studying onychomycosis. Also after infect-
ing the dermatophytic fungi Trichophyton rubrum, the 
growth was observed on the surface of the film and the 
fungi was also able to penetrate inside the films [125] 
studied the use of chicken feather keratin as a template 
to produce silver nanoparticles (AgNP) and gold nano-
particles (AuNP). The AuNP and AgNP had spherical 
shape and a reported diameter of 3-13 nm and 4- 20 nm 
respectively. The authors proposed the use of synthesized 
nanoparticles for controlling growth of Klebsiella pneu-
moniae and Pseudomonas aeruginosa as well as potential 
urease inhibitor. Keratin materials are also being explored 
as a substrate or coating material for in vitro culturing of 
cells [8] utilized keratin from goat hair to prepare bio-
material and use it as coating material for in  vitro cul-
turing of mesenchymal stem cells (MSC’s) and primary 
goat fibroblast cells. The authors reported that the kera-
tin biomaterials hold promising suitability in the area of 
cell-based tissue engineering and wound healing owing 
to their biocompatibility.

Conclusion
Keratin from variety of waste sources such as chicken 
feather, human hair are being utilized for the fabrica-
tion of biomaterials and have gained immense interest in 
various biomedical applications. Interesting physical and 
biological properties of keratin makes it a suitable can-
didate for applications such as skin tissue engineering, 
treating volumetric muscle loss, drug delivery and bone 
tissue regeneration among others. The use of hydrogels, 
scaffolds made up of keratin alone or loaded with either 
growth factors or drug molecules is an emerging option 
to handle and cure chronic wounds. In a similar fashion, 
the nanogels, nanoparticles, microfibers based on kera-
tin have also been found to be effective in drug delivery 
systems that are biocompatible and show prolonged drug 
delivery in addition to growth promoting capabilities for 
different human cell lines. For oral tissue regeneration 
as well, keratin biomaterials have been found to be non- 
toxic for periodontal fibroblasts or dental keratinocytes 
as well as have also shown growth promotion for human 
periodontal ligament fibroblasts among others. At present 
multiple roles of keratin in tissue engineering and haemo-
stasis are being established and more research could be 
focused on the detailed role of keratin in these areas.

Future perspectives
Various biomaterials in the form of films, hydrogels, 
nanoparticles have been utilized and put to diverse bio-
medical applications. Apart from being a cheap raw 
material keratin biomaterial have also been found to be 
biocompatible and biodegradable. Still fraction of kera-
tin based biomaterials in commercial market and actual 
use in medical field is very less. The major challenges for 
keratin biomaterials could be summarized into inconsist-
ent source material, complex extraction and purification 
methods, scalability and structural stability under varied 
physiological conditions such as pH, moisture and tem-
perature. Detailed studies pertaining to molecular inter-
actions and regarding the mechanical properties of these 
materials need to be taken up in order to overcome the 
aforesaid challenges.

Research needs to be focused on the behaviour of the 
keratin biomaterials with varied concentrations of dif-
ferent keratin components such as keratose, keratein, α 
keratin, β keratin and γ keratin under diverse physiologi-
cal conditions as well as their cellular interactions and 
attachment profiles. Knowledge from these studies would 
be a great leap towards success in keratin based bioma-
terials production and application. Further endeavours 
could be made to fabricate customised biomaterials for 
specific biomedical roles and additional validation of the 
usage of keratin-based biomaterials needs to be done in 
large animal models.
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